This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
'My last post, perhaps provocatively, called for a reduction of data in executive dashboards (digital, online, offline). More English (IABI, specifically) would lead to a smarter understanding of performance, and of course glory for data practitioners. Here's the post: Strategic & Tactical Dashboards: Best Practices, Examples. In the post Adil commented that he's observed that attribution modeling is missing from most web analytics dashboards.
Imagine you just started a job at a new company. You watched World War Z recently, so you're in a skeptical mood, and given that your last two startups failed from what you believe to be a lack of data, you're giving everything an extra critical eye. You start by thinking about the impact of the sales team. How much extra revenue are they generating for the company?
I’ve been a Bandcamp user for a few years now. I love the fact that they pay out a significant share of the revenue directly to the artists, unlike other services. In addition, despite the fact that fans may stream all the music for free and even easily rip it, almost $80M were paid out to artists through Bandcamp to date (including almost $3M in the last month) – serving as strong evidence that the traditional music industry’s fight against piracy is a waste of resources and time.
AI adoption is reshaping sales and marketing. But is it delivering real results? We surveyed 1,000+ GTM professionals to find out. The data is clear: AI users report 47% higher productivity and an average of 12 hours saved per week. But leaders say mainstream AI tools still fall short on accuracy and business impact. Download the full report today to see how AI is being used — and where go-to-market professionals think there are gaps and opportunities.
One of my favourite blog posts in recent times is The Log: What every software engineer should know about real-time data’s unifying abstraction by Jay Kreps. That post comprehensively describes how abstracting all the data produced by LinkedIn’s various components into a single log pipeline greatly simplified their architecture and enabled advanced data-driven applications.
I love studying users and products, and think data science can be extremely useful in guiding product/strategy as a whole. So I thought it would be fun to depart from the usual machine learning and engineering things I write about, and do a quick study of Airbnb. Think of this like business analysis, or strategy – from a data science point of view. (It's in slide deck form , of course, because that's how these things roll.).
Last week, I gave a talk at the Data Science Sydney Meetup group about some of the lessons I learned through almost winning five Kaggle competitions. The core of the talk was ten tips, which I think are worth putting in a post (the original slides are here). Some of these tips were covered in my beginner tips post from a few months ago. Similar advice was also recently published on the Kaggle blog – it’s great to see that my tips are in line with the thoughts of other prolific kagglers.
Last week, I gave a talk at the Data Science Sydney Meetup group about some of the lessons I learned through almost winning five Kaggle competitions. The core of the talk was ten tips, which I think are worth putting in a post (the original slides are here). Some of these tips were covered in my beginner tips post from a few months ago. Similar advice was also recently published on the Kaggle blog – it’s great to see that my tips are in line with the thoughts of other prolific kagglers.
If you are preparing for your VCDX examination, or even just interested in getting started, Nutanix invites you to come by the VCDX Study Lounge on Sunday at VMworld 2014 in San Francisco.
Speaker: Ben Epstein, Stealth Founder & CTO | Tony Karrer, Founder & CTO, Aggregage
When tasked with building a fundamentally new product line with deeper insights than previously achievable for a high-value client, Ben Epstein and his team faced a significant challenge: how to harness LLMs to produce consistent, high-accuracy outputs at scale. In this new session, Ben will share how he and his team engineered a system (based on proven software engineering approaches) that employs reproducible test variations (via temperature 0 and fixed seeds), and enables non-LLM evaluation m
The DHS compliance audit clock is ticking on Zero Trust. Government agencies can no longer ignore or delay their Zero Trust initiatives. During this virtual panel discussion—featuring Kelly Fuller Gordon, Founder and CEO of RisX, Chris Wild, Zero Trust subject matter expert at Zermount, Inc., and Principal of Cybersecurity Practice at Eliassen Group, Trey Gannon—you’ll gain a detailed understanding of the Federal Zero Trust mandate, its requirements, milestones, and deadlines.
GAP's AI-Driven QA Accelerators revolutionize software testing by automating repetitive tasks and enhancing test coverage. From generating test cases and Cypress code to AI-powered code reviews and detailed defect reports, our platform streamlines QA processes, saving time and resources. Accelerate API testing with Pytest-based cases and boost accuracy while reducing human error.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content