This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Day in and day out we stare at standard tables and rows and convert them into smaller or scarier tables and rows and through analysis we try and move the really heavy beast called the "organization" into action. It is hard. This blog post has three ideas I've learned from other smart people, ideas that help surprise the "organization" with something non-normal and get it to take action.
Lots of people know that the Riemann Hypothesis has something to do with prime numbers, but most introductions fail to say what or why. I’ll try to give one angle of explanation. Layman’s Terms. Suppose you have a bunch of friends, each with an instrument that plays at a frequency equal to the imaginary part of a zero of the Riemann zeta function.
Many of you are aware that I am the co-Founder of Market Motive, a delightful little labor of love whose mission in life is to provide bleeding edge education via quarterly, what we call, Master Certification courses. There are seven courses in all: SEO, PPC, Social Media, Web Analytics, Conversion Optimization, Marketing Fundamentals and Online PR.
I was playing around with the Hacker News database Ronnie Roller made (thanks!), so I thought I’d post some of the things I looked at. Activity on the Site. My first question was how activity on the site has increased over time. I looked at number of posts, points on posts, comments on posts, and number of users. Posts. This looks like a strong linear fit, with an increase of 292 posts every month.
AI adoption is reshaping sales and marketing. But is it delivering real results? We surveyed 1,000+ GTM professionals to find out. The data is clear: AI users report 47% higher productivity and an average of 12 hours saved per week. But leaders say mainstream AI tools still fall short on accuracy and business impact. Download the full report today to see how AI is being used — and where go-to-market professionals think there are gaps and opportunities.
Measure theory studies ways of generalizing the notions of length/area/volume. Even in 2 dimensions, it might not be clear how to measure the area of the following fairly tame shape: much less the “area” of even weirder shapes in higher dimensions or different spaces entirely. For example, suppose you want to measure the length of a book (so that you can get a good sense of how long it takes to read).
(Way back when, I went through all the Netflix prize papers. I’m now (very slowly) trying to clean up my notes and put them online. Eventually, I hope to have a more integrated tutorial, but here’s a rough draft for now.). This is a summary of Koren’s 2008 Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model.
The Kahn, Saks, and Sturtevant approach to the Evasiveness Conjecture (see the original paper here ) is an epic application of pure mathematics to computer science. I’ll give an overview of the approach here, and probably try to add some more information on the problem in other posts. tl;dr The KSS approach provides an algebraic-topological attack to a combinatorial hypothesis, and reduces a graph complexity problem to a problem of contractibility and (not) finding fixed points.
The Kahn, Saks, and Sturtevant approach to the Evasiveness Conjecture (see the original paper here ) is an epic application of pure mathematics to computer science. I’ll give an overview of the approach here, and probably try to add some more information on the problem in other posts. tl;dr The KSS approach provides an algebraic-topological attack to a combinatorial hypothesis, and reduces a graph complexity problem to a problem of contractibility and (not) finding fixed points.
Given a set of datapoints, we often want to know how many clusters the datapoints form. The gap statistic and the prediction strength are two practical algorithms for choosing the number of clusters. Gap Statistic. The gap statistic algorithm works as follows: For each i from 1 up to some maximum number of clusters, Run a k-means algorithm on the original dataset to find i clusters, and sum the distance of all points from their cluster mean.
Suppose you’re very indecisive, so whenever you want to watch a movie, you ask your friend Willow if she thinks you’ll like it. In order to answer, Willow first needs to figure out what movies you like, so you give her a bunch of movies and tell her whether you liked each one or not (i.e., you give her a labeled training set). Then, when you ask her if she thinks you’ll like movie X or not, she plays a 20 questions-like game with IMDB, asking questions like “Is X a romant
(Way back when, I went through all the Netflix prize papers. I’m now (very slowly) trying to clean up my notes and put them online. Eventually, I hope to have a more integrated tutorial, but here’s a rough draft for now.). This is a summary of Bell and Koren’s 2007 Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights paper. tl;dr This paper’s main innovation is deriving neighborhood weights by solving a least squares problem, instead of
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content