2022

article thumbnail

7 enterprise data strategy trends

CIO Business Intelligence

Every enterprise needs a data strategy that clearly defines the technologies, processes, people, and rules needed to safely and securely manage its information assets and practices. As with just about everything in IT, a data strategy must evolve over time to keep pace with evolving technologies, customers, markets, business needs and practices, regulations, and a virtually endless number of other priorities.

article thumbnail

Building Our Applications Using Flutter

Analytics Vidhya

This article was published as a part of the Data Science Blogathon. Introduction Flutter where F stands for Front- end, L stands for Language, U stands for UI layout, T stands for Time, T stands for Tools, E stands for Enable, and R stands for Rich. In other words, Flutter is a tool used in […]. The post Building Our Applications Using Flutter appeared first on Analytics Vidhya.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Closer to AGI?

O'Reilly on Data

DeepMind’s new model, Gato, has sparked a debate on whether artificial general intelligence (AGI) is nearer–almost at hand–just a matter of scale. Gato is a model that can solve multiple unrelated problems: it can play a large number of different games, label images, chat, operate a robot, and more. Not so many years ago, one problem with AI was that AI systems were only good at one thing.

Modeling 363
article thumbnail

What Can AI-Powered RPA and IA Mean For Businesses?

KDnuggets

RPA and IA have stunned the business world by availing impressive, intelligent automation capabilities for scales of businesses across industries, which we'll know in this blog.

160
160
article thumbnail

15 Modern Use Cases for Enterprise Business Intelligence

Large enterprises face unique challenges in optimizing their Business Intelligence (BI) output due to the sheer scale and complexity of their operations. Unlike smaller organizations, where basic BI features and simple dashboards might suffice, enterprises must manage vast amounts of data from diverse sources. What are the top modern BI use cases for enterprise businesses to help you get a leg up on the competition?

article thumbnail

10 Technical Blogs for Data Scientists to Advance AI/ML Skills

DataRobot Blog

Savvy data scientists are already applying artificial intelligence and machine learning to accelerate the scope and scale of data-driven decisions in strategic organizations. These data science teams are seeing tremendous results—millions of dollars saved, new customers acquired, and new innovations that create a competitive advantage. Other organizations are just discovering how to apply AI to accelerate experimentation time frames and find the best models to produce results.

article thumbnail

Data Speaks for Itself: Data Littering

TDAN

No, this is not a mistyping of data literacy. Yes, like everyone, I am aware of and fully on-board with the growing movement to improve data literacy in the enterprise. What I want to talk about is Data Littering, which is something else entirely. Data Littering is the deliberate act of creating and distributing data […].

More Trending

article thumbnail

What is Dark Data, Why Does it Matter, and Why Are Humans Still Needed?

Timo Elliott

Back in the 1960s, a pair of radio astronomers were busily collecting data on distant galaxies. They had been doing this for years. Elsewhere, other astronomers had been doing the same. But what set these astronomers apart – and eventually earned them a Nobel Prize – was what they eventually found in the data. Like other radio astronomers, they had long detected a consistent noise pattern.

IT 143
article thumbnail

Systems Thinking and Data Science: a partnership or a competition?

Jen Stirrup

Information is pretty thin stuff, unless mixed with experience. – Clarence Day (1874–1935), American essayist. Why do organizations get stuck with their data? It is such a fundamental question. Often, this problem can be due to the organization concentrating solely on technology and data. However, organizations can be supported by a synergistic approach by integrating systems thinking with the data strategy and technical perspective.

article thumbnail

DataRobot and Snowflake Healthcare Campaign

DataRobot

Shifting to Proactive Healthcare Delivery with AI. The Case for Change. The UK Government Health and Care Bill sets up Integrated Care Systems (ICSs) as legal entities from July 2022. While ICSs have been operating in shadow-format for a number of years, this long-awaited shift determines that health and care delivery in England is regionally managed and focused around the needs of the local population.

article thumbnail

Is Quantum Computing the Future of Artificial Intelligence?

Analytics Vidhya

This article was published as a part of the Data Science Blogathon. Source: Forbes.com Introduction It is not hidden from the audience that quantum computing is the future of data processing. Tech giants like IBM, Google, and Microsoft are all aggressively pursuing quantum computing technology for a good reason. The massive speedups and power savings of quantum […].

article thumbnail

8 Steps to Transformation at Speed & Scale – Your Guide to Deploying StratOps

📌Is your Data & AI transformation struggling to really impact the business? Discover the game-changing StratOps approach that: Bridges the Gap : Connect your Data & AI strategy to your operating model, to ensure alignment at every level. Prioritizes Outcomes : Focuses on concrete business outcomes from day one, rather than capabilities in isolation.

article thumbnail

Blockchain and Deploying Applications on Docker and Kubernetes

Analytics Vidhya

This article was published as a part of the Data Science Blogathon. Introduction Niti Ayog, one of the transforming national institutions, has published an article on Blockchain use cases in India. Few questions about Blockchain, why Blockchain, and how we can deploy our applications through the docker and Kubernetes we should know. Objectives We will discuss […].

article thumbnail

Three R Libraries for Automated EDA

Analytics Vidhya

This article was published as a part of the Data Science Blogathon. Introduction With the increasing use of technology, data accumulation is faster than ever due to connected smart devices. These devices continuously collect and transmit data that can be processed, transformed, and stored for later use. This collected data, known as big data, holds valuable […].

Big Data 399
article thumbnail

Introduction to Requests Library in Python

Analytics Vidhya

This article was published as a part of the Data Science Blogathon. Introduction Requests in Python is a module that can be used to send all kinds of HTTP requests. It is straightforward to use and is a human-friendly HTTP Library. Using the requests library; we do not need to manually add the query string […]. The post Introduction to Requests Library in Python appeared first on Analytics Vidhya.

article thumbnail

Blockchain Technology and its Types

Analytics Vidhya

This article was published as a part of the Data Science Blogathon. Introduction Blockchain technology is a decentralized, distributed ledger that keeps a record of ownership of digital assets. Any data stored on the blockchain cannot be modified, making the technology a legitimate disruptor for payments, cybersecurity, and healthcare industries. Blockchain is a system of registering […].

article thumbnail

Marketing Operations in 2025: A New Framework for Success

Speaker: Mike Rizzo, Founder & CEO, MarketingOps.com and Darrell Alfonso, Director of Marketing Strategy and Operations, Indeed.com

Though rarely in the spotlight, marketing operations are the backbone of the efficiency, scalability, and alignment that define top-performing marketing teams. In this exclusive webinar led by industry visionaries Mike Rizzo and Darrell Alfonso, we’re giving marketing operations the recognition they deserve! We will dive into the 7 P Model —a powerful framework designed to assess and optimize your marketing operations function.

article thumbnail

DogeCoin Prediction Using Time Series Analysis

Analytics Vidhya

This article was published as a part of the Data Science Blogathon. Photo by Kanchanara on Unsplash Table of Contents Introduction Gentle Overview What is Time Series Analysis? Types of analysis ARIMA Moving Average Exponential Smoothing Heard of DogeCoin? Implementation of Dogecoin price prediction Conclusion Introduction Machine learning will automate jobs that most people thought could […].

article thumbnail

Step-by-Step Exploratory Data Analysis (EDA) using Python

Analytics Vidhya

This article was published as a part of the Data Science Blogathon. Introduction to EDA The main objective of this article is to cover the steps involved in Data pre-processing, Feature Engineering, and different stages of Exploratory Data Analysis, which is an essential step in any research analysis. Data pre-processing, Feature Engineering, and EDA are fundamental early […].

article thumbnail

7 Techniques to Handle Imbalanced Data

KDnuggets

This blog post introduces seven techniques that are commonly applied in domains like intrusion detection or real-time bidding, because the datasets are often extremely imbalanced.

article thumbnail

The Complete Collection of Data Science Books – Part 2

KDnuggets

Read the best books on Machine Learning, Deep Learning, Computer Vision, Natural Language Processing, MLOps, Robotics, IoT, AI Products Management, and Data Science for Executives.

article thumbnail

Prepare Now: 2025s Must-Know Trends For Product And Data Leaders

Speaker: Jay Allardyce, Deepak Vittal, and Terrence Sheflin

As we look ahead to 2025, business intelligence and data analytics are set to play pivotal roles in shaping success. Organizations are already starting to face a host of transformative trends as the year comes to a close, including the integration of AI in data analytics, an increased emphasis on real-time data insights, and the growing importance of user experience in BI solutions.

article thumbnail

Data Science Minimum: 10 Essential Skills You Need to Know to Start Doing Data Science

KDnuggets

Data science is ever-evolving, so mastering its foundational technical and soft skills will help you be successful in a career as a Data Scientist, as well as pursue advance concepts, such as deep learning and artificial intelligence.

article thumbnail

More Data Science Cheatsheets

KDnuggets

It's time again to look at some data science cheatsheets. Here you can find a short selection of such resources which can cater to different existing levels of knowledge and breadth of topics of interest.

article thumbnail

How To Overcome The Fear of Math and Learn Math For Data Science

KDnuggets

Many aspiring Data Scientists, especially when self-learning, fail to learn the necessary math foundations. These recommendations for learning approaches along with references to valuable resources can help you overcome a personal sense of not being "the math type" or belief that you "always failed in math.".

article thumbnail

We Don’t Need Data Scientists, We Need Data Engineers

KDnuggets

As more people are entering the field of Data Science and more companies are hiring for data-centric roles, what type of jobs are currently in highest demand? There is so much data in the world, and it just keeps flooding in, it now looks like companies are targeting those who can engineer that data more than those who can only model the data.

article thumbnail

The Ultimate Guide To Data-Driven Construction: Optimize Projects, Reduce Risks, & Boost Innovation

Speaker: Donna Laquidara-Carr, PhD, LEED AP, Industry Insights Research Director at Dodge Construction Network

In today’s construction market, owners, construction managers, and contractors must navigate increasing challenges, from cost management to project delays. Fortunately, digital tools now offer valuable insights to help mitigate these risks. However, the sheer volume of tools and the complexity of leveraging their data effectively can be daunting. That’s where data-driven construction comes in.

article thumbnail

How I Got 4 Data Science Offers and Doubled My Income 2 Months After Being Laid Off

KDnuggets

In this blog, I shared my story on getting 4 data science job offers including Airbnb, Lyft and Twitter after being laid off. Any data scientist who was laid off due to the pandemic or who is actively looking for a data science position can find something here to which they can relate.

article thumbnail

How to Select Rows and Columns in Pandas Using [ ],loc, iloc,at and.iat

KDnuggets

Subset selection is one of the most frequently performed tasks while manipulating data. Pandas provides different ways to efficiently select subsets of data from your DataFrame.

160
160
article thumbnail

How Much Math Do You Need in Data Science?

KDnuggets

There exist so many great computational tools available for Data Scientists to perform their work. However, mathematical skills are still essential in data science and machine learning because these tools will only be black-boxes for which you will not be able to ask core analytical questions without a theoretical foundation.

article thumbnail

Introduction to Pandas for Data Science

KDnuggets

The Pandas library is core to any Data Science work in Python. This introduction will walk you through the basics of data manipulating, and features many of Pandas important features.

article thumbnail

Launching LLM-Based Products: From Concept to Cash in 90 Days

Speaker: Christophe Louvion, Chief Product & Technology Officer of NRC Health and Tony Karrer, CTO at Aggregage

Christophe Louvion, Chief Product & Technology Officer of NRC Health, is here to take us through how he guided his company's recent experience of getting from concept to launch and sales of products within 90 days. In this exclusive webinar, Christophe will cover key aspects of his journey, including: LLM Development & Quick Wins 🤖 Understand how LLMs differ from traditional software, identifying opportunities for rapid development and deployment.

article thumbnail

If I Had To Start Learning Data Science Again, How Would I Do It?

KDnuggets

While different ways to learn Data Science for the first time exist, the approach that works for you should be based on how you learn best. One powerful method is to evolve your learning from simple practice into complex foundations, as outlined in this learning path recommended by a physicist who turned into a Data Scientist.

article thumbnail

Free MIT Courses on Calculus: The Key to Understanding Deep Learning

KDnuggets

Calculus is the key to fully understanding how neural networks function. Go beyond a surface understanding of this mathematics discipline with these free course materials from MIT.

article thumbnail

Frameworks for Approaching the Machine Learning Process

KDnuggets

This post is a summary of 2 distinct frameworks for approaching machine learning tasks, followed by a distilled third. Do they differ considerably (or at all) from each other, or from other such processes available?

article thumbnail

Easy Guide To Data Preprocessing In Python

KDnuggets

Preprocessing data for machine learning models is a core general skill for any Data Scientist or Machine Learning Engineer. Follow this guide using Pandas and Scikit-learn to improve your techniques and make sure your data leads to the best possible outcome.

article thumbnail

Entity Resolution: Your Guide to Deciding Whether to Build It or Buy It

Adding high-quality entity resolution capabilities to enterprise applications, services, data fabrics or data pipelines can be daunting and expensive. Organizations often invest millions of dollars and years of effort to achieve subpar results. This guide will walk you through the requirements and challenges of implementing entity resolution. By the end, you'll understand what to look for, the most common mistakes and pitfalls to avoid, and your options.