Remove Events Remove Metadata Remove Unstructured Data
article thumbnail

Implement a custom subscription workflow for unmanaged Amazon S3 assets published with Amazon DataZone

AWS Big Data

Although Amazon DataZone automates subscription fulfillment for structured data assetssuch as data stored in Amazon Simple Storage Service (Amazon S3), cataloged with the AWS Glue Data Catalog , or stored in Amazon Redshift many organizations also rely heavily on unstructured data.

article thumbnail

SAP Datasphere Powers Business at the Speed of Data

Rocket-Powered Data Science

Datasphere accesses and integrates both SAP and non-SAP data sources into end-users’ data flows, including on-prem data warehouses, cloud data warehouses and lakehouses, relational databases, virtual data products, in-memory data, and applications that generate data (such as external API data loads).

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

Initially, data warehouses were the go-to solution for structured data and analytical workloads but were limited by proprietary storage formats and their inability to handle unstructured data. XTable isn’t a new table format but provides abstractions and tools to translate the metadata associated with existing formats.

Metadata 105
article thumbnail

Monitoring Apache Iceberg metadata layer using AWS Lambda, AWS Glue, and AWS CloudWatch

AWS Big Data

In the era of big data, data lakes have emerged as a cornerstone for storing vast amounts of raw data in its native format. They support structured, semi-structured, and unstructured data, offering a flexible and scalable environment for data ingestion from multiple sources.

Metadata 126
article thumbnail

The Increasing Importance of Open Table Formats

David Menninger's Analyst Perspectives

It was not until the addition of open table formats— specifically Apache Hudi, Apache Iceberg and Delta Lake—that data lakes truly became capable of supporting multiple business intelligence (BI) projects as well as data science and even operational applications and, in doing so, began to evolve into data lakehouses.

Data Lake 130
article thumbnail

Top analytics announcements of AWS re:Invent 2024

AWS Big Data

This premier event showcased groundbreaking advancements, keynotes from AWS leadership, hands-on technical sessions, and exciting product launches. Analytics remained one of the key focus areas this year, with significant updates and innovations aimed at helping businesses harness their data more efficiently and accelerate insights.

article thumbnail

Data’s dark secret: Why poor quality cripples AI and growth

CIO Business Intelligence

We also examine how centralized, hybrid and decentralized data architectures support scalable, trustworthy ecosystems. As data-centric AI, automated metadata management and privacy-aware data sharing mature, the opportunity to embed data quality into the enterprises core has never been more significant.