Remove Experimentation Remove IT Remove Uncertainty
article thumbnail

Escaping POC Purgatory: Evaluation-Driven Development for AI Systems

O'Reilly on Data

ML apps needed to be developed through cycles of experimentation (as were no longer able to reason about how theyll behave based on software specs). The skillset and the background of people building the applications were realigned: People who were at home with data and experimentation got involved!

Testing 174
article thumbnail

Business Strategies for Deploying Disruptive Tech: Generative AI and ChatGPT

Rocket-Powered Data Science

Those F’s are: Fragility, Friction, and FUD (Fear, Uncertainty, Doubt). encouraging and rewarding) a culture of experimentation across the organization. Source: [link] Every business wants to get on board with ChatGPT, to implement it, operationalize it, and capitalize on it.

Strategy 290
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

What you need to know about product management for AI

O'Reilly on Data

Machine learning adds uncertainty. If you’re already a software product manager (PM), you have a head start on becoming a PM for artificial intelligence (AI) or machine learning (ML). You already know the game and how it is played: you’re the coordinator who ties everything together, from the developers and designers to the executives.

article thumbnail

How to Set AI Goals

O'Reilly on Data

Technical competence results in reduced risk and uncertainty. Results are typically achieved through a scientific process of discovery, exploration, and experimentation, and these processes are not always predictable. Goals should be defined specifically and at a granular level for each stakeholder and relevant use case. Conclusion.

article thumbnail

13 IT resolutions for 2024

CIO Business Intelligence

CIOs are readying for another demanding year, anticipating that artificial intelligence, economic uncertainty, business demands, and expectations for ever-increasing levels of speed will all be in play for 2024. Yet, CIOs remain both undaunted by that list and expectant about what they can achieve. We’re piloting, PoC-ing.

IT 144
article thumbnail

Machine Learning Product Management: Lessons Learned

Domino Data Lab

Pete indicates, in both his November 2018 and Strata London talks, that ML requires a more experimental approach than traditional software engineering. It is more experimental because it is “an approach that involves learning from data instead of programmatically following a set of human rules.”

article thumbnail

Uncertainties: Statistical, Representational, Interventional

The Unofficial Google Data Science Blog

by AMIR NAJMI & MUKUND SUNDARARAJAN Data science is about decision making under uncertainty. Some of that uncertainty is the result of statistical inference, i.e., using a finite sample of observations for estimation. But there are other kinds of uncertainty, at least as important, that are not statistical in nature.