Remove Experimentation Remove Knowledge Discovery Remove Metrics
article thumbnail

Experiment design and modeling for long-term studies in ads

The Unofficial Google Data Science Blog

Nevertheless, A/B testing has challenges and blind spots, such as: the difficulty of identifying suitable metrics that give "works well" a measurable meaning. accounting for effects "orthogonal" to the randomization used in experimentation. accounting for effects "orthogonal" to the randomization used in experimentation.

article thumbnail

Performing Non-Compartmental Analysis with Julia and Pumas AI

Domino Data Lab

Having calculated AUC/AUMC, we can further derive a number of useful metrics like: Total clearance of the drug from plasma. Domino Lab supports both interactive and batch experimentation with all popular IDEs and notebooks (Jupyter, RStudio, SAS, Zeppelin, etc.). The area under the first moment curve would respectively be. cl_f = NCA.cl(pain_nca)

Metrics 59
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Variance and significance in large-scale online services

The Unofficial Google Data Science Blog

Unlike experimentation in some other areas, LSOS experiments present a surprising challenge to statisticians — even though we operate in the realm of “big data”, the statistical uncertainty in our experiments can be substantial. We must therefore maintain statistical rigor in quantifying experimental uncertainty.

article thumbnail

LSOS experiments: how I learned to stop worrying and love the variability

The Unofficial Google Data Science Blog

Despite a very large number of experimental units, the experiments conducted by LSOS cannot presume statistical significance of all effects they deem practically significant. The result is that experimenters can’t afford to be sloppy about quantifying uncertainty. In statistics, such segments are often called “blocks” or “strata”.