Remove Experimentation Remove Measurement Remove Strategy
article thumbnail

10 AI strategy questions every CIO must answer

CIO Business Intelligence

To counter such statistics, CIOs say they and their C-suite colleagues are devising more thoughtful strategies. Here are 10 questions CIOs, researchers, and advisers say are worth asking and answering about your organizations AI strategies. How does our AI strategy support our business objectives, and how do we measure its value?

Strategy 141
article thumbnail

Business Strategies for Deploying Disruptive Tech: Generative AI and ChatGPT

Rocket-Powered Data Science

Third, any commitment to a disruptive technology (including data-intensive and AI implementations) must start with a business strategy. I suggest that the simplest business strategy starts with answering three basic questions: What? encouraging and rewarding) a culture of experimentation across the organization.

Strategy 290
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Practical Skills for The AI Product Manager

O'Reilly on Data

AI PMs should enter feature development and experimentation phases only after deciding what problem they want to solve as precisely as possible, and placing the problem into one of these categories. Experimentation: It’s just not possible to create a product by building, evaluating, and deploying a single model.

article thumbnail

9 IT resolutions for 2025

CIO Business Intelligence

Balancing the rollout with proper training, adoption, and careful measurement of costs and benefits is essential, particularly while securing company assets in tandem, says Ted Kenney, CIO of tech company Access. Our success will be measured by user adoption, a reduction in manual tasks, and an increase in sales and customer satisfaction.

IT 140
article thumbnail

Escaping POC Purgatory: Evaluation-Driven Development for AI Systems

O'Reilly on Data

ML apps needed to be developed through cycles of experimentation (as were no longer able to reason about how theyll behave based on software specs). The skillset and the background of people building the applications were realigned: People who were at home with data and experimentation got involved! How will you measure success?

Testing 174
article thumbnail

Where CIOs should place their 2025 AI bets

CIO Business Intelligence

Deloittes State of Generative AI in the Enterprise reports nearly 70% have moved 30% or fewer of their gen AI experiments into production, and 41% of organizations have struggled to define and measure the impacts of their gen AI efforts. Even this breakdown leaves out data management, engineering, and security functions.

article thumbnail

From project to product: Architecting the future of enterprise technology

CIO Business Intelligence

By articulating fitness functions automated tests tied to specific quality attributes like reliability, security or performance teams can visualize and measure system qualities that align with business goals. Experimentation: The innovation zone Progressive cities designate innovation districts where new ideas can be tested safely.