Remove Experimentation Remove Metrics Remove Modeling
article thumbnail

Bringing an AI Product to Market

O'Reilly on Data

The first step in building an AI solution is identifying the problem you want to solve, which includes defining the metrics that will demonstrate whether you’ve succeeded. It sounds simplistic to state that AI product managers should develop and ship products that improve metrics the business cares about. Agreeing on metrics.

Marketing 363
article thumbnail

Practical Skills for The AI Product Manager

O'Reilly on Data

AI PMs should enter feature development and experimentation phases only after deciding what problem they want to solve as precisely as possible, and placing the problem into one of these categories. Experimentation: It’s just not possible to create a product by building, evaluating, and deploying a single model.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The Lean Analytics Cycle: Metrics > Hypothesis > Experiment > Act

Occam's Razor

To win in business you need to follow this process: Metrics > Hypothesis > Experiment > Act. We are far too enamored with data collection and reporting the standard metrics we love because others love them because someone else said they were nice so many years ago. This should not be news to you. But it is not routine.

Metrics 157
article thumbnail

What you need to know about product management for AI

O'Reilly on Data

Instead of writing code with hard-coded algorithms and rules that always behave in a predictable manner, ML engineers collect a large number of examples of input and output pairs and use them as training data for their models. The model is produced by code, but it isn’t code; it’s an artifact of the code and the training data.

article thumbnail

Email Marketing: Campaign Analysis, Metrics, Best Practices

Occam's Razor

The only requirement is that your mental model (and indeed, company culture) should be solidly rooted in permission marketing. You just have to have the right mental model (see Seth Godin above) and you have to… wait for it… wait for it… measure everything you do! Just to ensure you are executing against your right mental model.

Metrics 138
article thumbnail

Experimentation and Testing: A Primer

Occam's Razor

This post is a primer on the delightful world of testing and experimentation (A/B, Multivariate, and a new term from me: Experience Testing). Experimentation and testing help us figure out we are wrong, quickly and repeatedly and if you think about it that is a great thing for our customers, and for our employers. Counter claims?

article thumbnail

Do You Need a DataOps Dojo?

DataKitchen

Centralizing analytics helps the organization standardize enterprise-wide measurements and metrics. With a standard metric supported by a centralized technical team, the organization maintains consistency in analytics. The center of excellence (COE) model leverages the DataOps team to solve real-world challenges.

Metrics 243