Remove Experimentation Remove Metrics Remove Testing
article thumbnail

Bringing an AI Product to Market

O'Reilly on Data

Product Managers are responsible for the successful development, testing, release, and adoption of a product, and for leading the team that implements those milestones. The first step in building an AI solution is identifying the problem you want to solve, which includes defining the metrics that will demonstrate whether you’ve succeeded.

Marketing 364
article thumbnail

Escaping POC Purgatory: Evaluation-Driven Development for AI Systems

O'Reilly on Data

Weve seen this across dozens of companies, and the teams that break out of this trap all adopt some version of Evaluation-Driven Development (EDD), where testing, monitoring, and evaluation drive every decision from the start. What breaks your app in production isnt always what you tested for in dev! The way out? How do we do so?

Testing 174
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Robust Experimentation and Testing | Reasons for Failure!

Occam's Razor

Since you're reading a blog on advanced analytics, I'm going to assume that you have been exposed to the magical and amazing awesomeness of experimentation and testing. And yet, chances are you really don’t know anyone directly who uses experimentation as a part of their regular business practice. Wah wah wah waaah.

article thumbnail

Experimentation and Testing: A Primer

Occam's Razor

This post is a primer on the delightful world of testing and experimentation (A/B, Multivariate, and a new term from me: Experience Testing). Experimentation and testing help us figure out we are wrong, quickly and repeatedly and if you think about it that is a great thing for our customers, and for our employers.

article thumbnail

Practical Skills for The AI Product Manager

O'Reilly on Data

AI PMs should enter feature development and experimentation phases only after deciding what problem they want to solve as precisely as possible, and placing the problem into one of these categories. Experimentation: It’s just not possible to create a product by building, evaluating, and deploying a single model.

article thumbnail

The Lean Analytics Cycle: Metrics > Hypothesis > Experiment > Act

Occam's Razor

To win in business you need to follow this process: Metrics > Hypothesis > Experiment > Act. We are far too enamored with data collection and reporting the standard metrics we love because others love them because someone else said they were nice so many years ago. That metric is tied to a KPI.

Metrics 157
article thumbnail

The DataOps Vendor Landscape, 2021

DataKitchen

Testing and Data Observability. It orchestrates complex pipelines, toolchains, and tests across teams, locations, and data centers. Prefect Technologies — Open-source data engineering platform that builds, tests, and runs data workflows. Testing and Data Observability. Production Monitoring and Development Testing.

Testing 304