This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Machine learning adds uncertainty. Underneath this uncertainty lies further uncertainty in the development process itself. There are strategies for dealing with all of this uncertainty–starting with the proverb from the early days of Agile: “ do the simplest thing that could possibly work.”
To win in business you need to follow this process: Metrics > Hypothesis > Experiment > Act. We are far too enamored with data collection and reporting the standard metrics we love because others love them because someone else said they were nice so many years ago. That metric is tied to a KPI.
Ideally, AI PMs would steer development teams to incorporate I/O validation into the initial build of the production system, along with the instrumentation needed to monitor model accuracy and other technical performance metrics. But in practice, it is common for model I/O validation steps to be added later, when scaling an AI product.
the weight given to Likes in our video recommendation algorithm) while $Y$ is a vector of outcome measures such as different metrics of user experience (e.g., Crucially, it takes into account the uncertainty inherent in our experiments. Here, $X$ is a vector of tuning parameters that control the system's operating characteristics (e.g.
by AMIR NAJMI & MUKUND SUNDARARAJAN Data science is about decision making under uncertainty. Some of that uncertainty is the result of statistical inference, i.e., using a finite sample of observations for estimation. But there are other kinds of uncertainty, at least as important, that are not statistical in nature.
Experiment with the “highly visible and highly hyped”: Gartner repeatedly pointed out that organisations that innovate during tough economic times “stay ahead of the pack”, with Mesaglio in particular calling for such experimentation to be public and visible.
Although the absolute metrics of the sparse vector model can’t surpass those of the best dense vector models, it possesses unique and advantageous characteristics. Experimental data selection For retrieval evaluation, we used to use the datasets from BeIR. We care more about the recall metric.
by MICHAEL FORTE Large-scale live experimentation is a big part of online product development. This means a small and growing product has to use experimentation differently and very carefully. This blog post is about experimentation in this regime. Such decisions involve an actual hypothesis test on specific metrics (e.g.
Skomoroch proposes that managing ML projects are challenging for organizations because shipping ML projects requires an experimental culture that fundamentally changes how many companies approach building and shipping software. Another pattern that I’ve seen in good PMs is that they’re very metric-driven.
Unlike experimentation in some other areas, LSOS experiments present a surprising challenge to statisticians — even though we operate in the realm of “big data”, the statistical uncertainty in our experiments can be substantial. We must therefore maintain statistical rigor in quantifying experimentaluncertainty.
Despite a very large number of experimental units, the experiments conducted by LSOS cannot presume statistical significance of all effects they deem practically significant. The result is that experimenters can’t afford to be sloppy about quantifying uncertainty. At Google, we tend to refer to them as slices.
A geo experiment is an experiment where the experimental units are defined by geographic regions. This means it is possible to specify exactly in which geos an ad campaign will be served – and to observe the ad spend and the response metric at the geo level. They are non-overlapping geo-targetable regions. by turning campaigns off).
It is important to make clear distinctions among each of these, and to advance the state of knowledge through concerted observation, modeling and experimentation. Note also that this account does not involve ambiguity due to statistical uncertainty. We sliced and diced the experimental data in many many ways.
Cultivating high-performance teams , recruiting leaders, retaining talent, and continuously improving digital KPIs are hallmarks of strong IT cultures — but their metrics lag the CIO’s culture-improving programs. When changes are made without transparency or input from the team, it breeds uncertainty and resentment.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content