Remove Experimentation Remove Metrics Remove Uncertainty
article thumbnail

Towards optimal experimentation in online systems

The Unofficial Google Data Science Blog

the weight given to Likes in our video recommendation algorithm) while $Y$ is a vector of outcome measures such as different metrics of user experience (e.g., Crucially, it takes into account the uncertainty inherent in our experiments. Here, $X$ is a vector of tuning parameters that control the system's operating characteristics (e.g.

article thumbnail

Uncertainties: Statistical, Representational, Interventional

The Unofficial Google Data Science Blog

by AMIR NAJMI & MUKUND SUNDARARAJAN Data science is about decision making under uncertainty. Some of that uncertainty is the result of statistical inference, i.e., using a finite sample of observations for estimation. But there are other kinds of uncertainty, at least as important, that are not statistical in nature.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

What you need to know about product management for AI

O'Reilly on Data

Machine learning adds uncertainty. Underneath this uncertainty lies further uncertainty in the development process itself. There are strategies for dealing with all of this uncertainty–starting with the proverb from the early days of Agile: “ do the simplest thing that could possibly work.”

article thumbnail

Integrate sparse and dense vectors to enhance knowledge retrieval in RAG using Amazon OpenSearch Service

AWS Big Data

Although the absolute metrics of the sparse vector model can’t surpass those of the best dense vector models, it possesses unique and advantageous characteristics. Experimental data selection For retrieval evaluation, we used to use the datasets from BeIR. We care more about the recall metric.

Metrics 100
article thumbnail

The Lean Analytics Cycle: Metrics > Hypothesis > Experiment > Act

Occam's Razor

To win in business you need to follow this process: Metrics > Hypothesis > Experiment > Act. We are far too enamored with data collection and reporting the standard metrics we love because others love them because someone else said they were nice so many years ago. That metric is tied to a KPI.

Metrics 157
article thumbnail

Why CIOs should invest in digital through economic headwinds

CIO Business Intelligence

Experiment with the “highly visible and highly hyped”: Gartner repeatedly pointed out that organisations that innovate during tough economic times “stay ahead of the pack”, with Mesaglio in particular calling for such experimentation to be public and visible.

article thumbnail

10 ways to kill your IT culture

CIO Business Intelligence

Cultivating high-performance teams , recruiting leaders, retaining talent, and continuously improving digital KPIs are hallmarks of strong IT cultures — but their metrics lag the CIO’s culture-improving programs. When changes are made without transparency or input from the team, it breeds uncertainty and resentment.

IT 139