Remove Experimentation Remove Modeling Remove Risk
article thumbnail

AI agents will transform business processes — and magnify risks

CIO Business Intelligence

According to Gartner, an agent doesn’t have to be an AI model. Starting in 2018, the agency used agents, in the form of Raspberry PI computers running biologically-inspired neural networks and time series models, as the foundation of a cooperative network of sensors. “It Adding smarter AI also adds risk, of course. “At

Risk 136
article thumbnail

Towards optimal experimentation in online systems

The Unofficial Google Data Science Blog

Experiments, Parameters and Models At Youtube, the relationships between system parameters and metrics often seem simple — straight-line models sometimes fit our data well. That is true generally, not just in these experiments — spreading measurements out is generally better, if the straight-line model is a priori correct.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

DataRobot Notebooks: Enhanced Code-First Experience for Rapid AI Experimentation

DataRobot Blog

Most, if not all, machine learning (ML) models in production today were born in notebooks before they were put into production. Data science teams of all sizes need a productive, collaborative method for rapid AI experimentation. Capabilities Beyond Classic Jupyter for End-to-end Experimentation. Auto-scale compute.

article thumbnail

What Is Model Risk Management and How is it Supported by Enterprise MLOps?

Domino Data Lab

Model Risk Management is about reducing bad consequences of decisions caused by trusting incorrect or misused model outputs. Systematically enabling model development and production deployment at scale entails use of an Enterprise MLOps platform, which addresses the full lifecycle including Model Risk Management.

article thumbnail

Top 8 failings in delivering value with generative AI and how to overcome them

CIO Business Intelligence

This stark contrast between experimentation and execution underscores the difficulties in harnessing AI’s transformative power. Data privacy and compliance issues Failing: Mismanagement of internal data with external models can lead to privacy breaches and non-compliance with regulations. Of those, just three are considered successful.

article thumbnail

IT pros: One-third of AI projects just for show

CIO Business Intelligence

The long-term impact is even more worrying — companies risk falling behind competitors who are implementing AI strategically. Rosen sees a lot of experimentation without a clear sense of direction, from companies that don’t have a clear idea of what AI projects will match their business needs. The fear of missing out is real.

IT 138
article thumbnail

CIOs to spend ambitiously on AI in 2025 — and beyond

CIO Business Intelligence

Nate Melby, CIO of Dairyland Power Cooperative, says the Midwestern utility has been churning out large language models (LLMs) that not only automate document summarization but also help manage power grids during storms, for example. Only 13% plan to build a model from scratch.

ROI 135