Remove Experimentation Remove Modeling Remove Risk
article thumbnail

IDC chief research officer: GenAI, from experimentation to adoption

CIO Business Intelligence

Its been a year of intense experimentation. Now, the big question is: What will it take to move from experimentation to adoption? The key areas we see are having an enterprise AI strategy, a unified governance model and managing the technology costs associated with genAI to present a compelling business case to the executive team.

article thumbnail

Bringing an AI Product to Market

O'Reilly on Data

Without clarity in metrics, it’s impossible to do meaningful experimentation. AI PMs must ensure that experimentation occurs during three phases of the product lifecycle: Phase 1: Concept During the concept phase, it’s important to determine if it’s even possible for an AI product “ intervention ” to move an upstream business metric.

Marketing 364
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Practical Skills for The AI Product Manager

O'Reilly on Data

AI PMs should enter feature development and experimentation phases only after deciding what problem they want to solve as precisely as possible, and placing the problem into one of these categories. Experimentation: It’s just not possible to create a product by building, evaluating, and deploying a single model.

article thumbnail

CIOs to spend ambitiously on AI in 2025 — and beyond

CIO Business Intelligence

Nate Melby, CIO of Dairyland Power Cooperative, says the Midwestern utility has been churning out large language models (LLMs) that not only automate document summarization but also help manage power grids during storms, for example. Only 13% plan to build a model from scratch.

ROI 137
article thumbnail

The key to operational AI: Modern data architecture

CIO Business Intelligence

Recent research shows that 67% of enterprises are using generative AI to create new content and data based on learned patterns; 50% are using predictive AI, which employs machine learning (ML) algorithms to forecast future events; and 45% are using deep learning, a subset of ML that powers both generative and predictive models.

article thumbnail

Escaping POC Purgatory: Evaluation-Driven Development for AI Systems

O'Reilly on Data

Throughout this article, well explore real-world examples of LLM application development and then consolidate what weve learned into a set of first principlescovering areas like nondeterminism, evaluation approaches, and iteration cyclesthat can guide your work regardless of which models or frameworks you choose. Which multiagent frameworks?

Testing 174
article thumbnail

6 keys to genAI success in 2025

CIO Business Intelligence

While genAI has been a hot topic for the past couple of years, organizations have largely focused on experimentation. What are the associated risks and costs, including operational, reputational, and competitive? Find a change champion and get business users involved from the beginning to build, pilot, test, and evaluate models.