Remove Experimentation Remove Modeling Remove Strategy
article thumbnail

IDC chief research officer: GenAI, from experimentation to adoption

CIO Business Intelligence

Its been a year of intense experimentation. Now, the big question is: What will it take to move from experimentation to adoption? The key areas we see are having an enterprise AI strategy, a unified governance model and managing the technology costs associated with genAI to present a compelling business case to the executive team.

article thumbnail

Business Strategies for Deploying Disruptive Tech: Generative AI and ChatGPT

Rocket-Powered Data Science

While generative AI has been around for several years , the arrival of ChatGPT (a conversational AI tool for all business occasions, built and trained from large language models) has been like a brilliant torch brought into a dark room, illuminating many previously unseen opportunities.

Strategy 290
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How AI orchestration has become more important than the models themselves

CIO Business Intelligence

Large language models (LLMs) just keep getting better. In just about two years since OpenAI jolted the news cycle with the introduction of ChatGPT, weve already seen the launch and subsequent upgrades of dozens of competing models. From Llama3.1 to Gemini to Claude3.5 From Llama3.1 to Gemini to Claude3.5

Modeling 116
article thumbnail

Digital transformation 2025: What’s in, what’s out

CIO Business Intelligence

Transformational CIOs continuously invest in their operating model by developing product management, design thinking, agile, DevOps, change management, and data-driven practices. SAS CIO Jay Upchurch says successful CIOs in 2025 will build an integrated IT roadmap that blends generative AI with more mature AI strategies.

article thumbnail

Practical Skills for The AI Product Manager

O'Reilly on Data

AI PMs should enter feature development and experimentation phases only after deciding what problem they want to solve as precisely as possible, and placing the problem into one of these categories. Experimentation: It’s just not possible to create a product by building, evaluating, and deploying a single model.

article thumbnail

Gen AI in 2025: Playtime is over, time to get practical

CIO Business Intelligence

Generative AI playtime may be over, as organizations cut down on experimentation and pivot toward achieving business value, with a focus on fewer, more targeted use cases. Either you didnt have the right data to be able to do it, the technology wasnt there yet, or the models just werent there, Wells says of the rash of early pilot failures.

article thumbnail

The key to operational AI: Modern data architecture

CIO Business Intelligence

Recent research shows that 67% of enterprises are using generative AI to create new content and data based on learned patterns; 50% are using predictive AI, which employs machine learning (ML) algorithms to forecast future events; and 45% are using deep learning, a subset of ML that powers both generative and predictive models.