Remove Experimentation Remove Modeling Remove Uncertainty
article thumbnail

What you need to know about product management for AI

O'Reilly on Data

Instead of writing code with hard-coded algorithms and rules that always behave in a predictable manner, ML engineers collect a large number of examples of input and output pairs and use them as training data for their models. Machine learning adds uncertainty. Models also become stale and outdated over time.

article thumbnail

Business Strategies for Deploying Disruptive Tech: Generative AI and ChatGPT

Rocket-Powered Data Science

While generative AI has been around for several years , the arrival of ChatGPT (a conversational AI tool for all business occasions, built and trained from large language models) has been like a brilliant torch brought into a dark room, illuminating many previously unseen opportunities.

Strategy 290
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Escaping POC Purgatory: Evaluation-Driven Development for AI Systems

O'Reilly on Data

Throughout this article, well explore real-world examples of LLM application development and then consolidate what weve learned into a set of first principlescovering areas like nondeterminism, evaluation approaches, and iteration cyclesthat can guide your work regardless of which models or frameworks you choose. Which multiagent frameworks?

Testing 174
article thumbnail

How to Set AI Goals

O'Reilly on Data

In my book, I introduce the Technical Maturity Model: I define technical maturity as a combination of three factors at a given point of time. Technical competence results in reduced risk and uncertainty. Outputs from trained AI models include numbers (continuous or discrete), categories or classes (e.g.,

article thumbnail

AI Product Management After Deployment

O'Reilly on Data

Similarly, in “ Building Machine Learning Powered Applications: Going from Idea to Product ,” Emmanuel Ameisen states: “Indeed, exposing a model to users in production comes with a set of challenges that mirrors the ones that come with debugging a model.”.

article thumbnail

Machine Learning Product Management: Lessons Learned

Domino Data Lab

Unfortunately, a common challenge that many industry people face includes battling “ the model myth ,” or the perception that because their work includes code and data, their work “should” be treated like software engineering. These steps also reflect the experimental nature of ML product management.

article thumbnail

Uncertainties: Statistical, Representational, Interventional

The Unofficial Google Data Science Blog

by AMIR NAJMI & MUKUND SUNDARARAJAN Data science is about decision making under uncertainty. Some of that uncertainty is the result of statistical inference, i.e., using a finite sample of observations for estimation. But there are other kinds of uncertainty, at least as important, that are not statistical in nature.