Remove Experimentation Remove Risk Remove Uncertainty
article thumbnail

Escaping POC Purgatory: Evaluation-Driven Development for AI Systems

O'Reilly on Data

The coordination tax: LLM outputs are often evaluated by nontechnical stakeholders (legal, brand, support) not just for functionality, but for tone, appropriateness, and risk. ML apps needed to be developed through cycles of experimentation (as were no longer able to reason about how theyll behave based on software specs).

Testing 168
article thumbnail

Business Strategies for Deploying Disruptive Tech: Generative AI and ChatGPT

Rocket-Powered Data Science

3) How do we get started, when, who will be involved, and what are the targeted benefits, results, outcomes, and consequences (including risks)? Those F’s are: Fragility, Friction, and FUD (Fear, Uncertainty, Doubt). encouraging and rewarding) a culture of experimentation across the organization. Test early and often.

Strategy 290
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

What you need to know about product management for AI

O'Reilly on Data

Machine learning adds uncertainty. Underneath this uncertainty lies further uncertainty in the development process itself. There are strategies for dealing with all of this uncertainty–starting with the proverb from the early days of Agile: “ do the simplest thing that could possibly work.”

article thumbnail

How to Set AI Goals

O'Reilly on Data

Technical competence results in reduced risk and uncertainty. AI initiatives may also require significant considerations for governance, compliance, ethics, cost, and risk. Results are typically achieved through a scientific process of discovery, exploration, and experimentation, and these processes are not always predictable.

article thumbnail

The trinity of errors in applying confidence intervals: An exploration using Statsmodels

O'Reilly on Data

Because of this trifecta of errors, we need dynamic models that quantify the uncertainty inherent in our financial estimates and predictions. Practitioners in all social sciences, especially financial economics, use confidence intervals to quantify the uncertainty in their estimates and predictions. and an error term ??

article thumbnail

Machine Learning Product Management: Lessons Learned

Domino Data Lab

Pete indicates, in both his November 2018 and Strata London talks, that ML requires a more experimental approach than traditional software engineering. It is more experimental because it is “an approach that involves learning from data instead of programmatically following a set of human rules.”

article thumbnail

Towards optimal experimentation in online systems

The Unofficial Google Data Science Blog

Crucially, it takes into account the uncertainty inherent in our experiments. To find optimal values of two parameters experimentally, the obvious strategy would be to experiment with and update them in separate, sequential stages. In this section we’ll discuss how we approach these two kinds of uncertainty with QCQP.