This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
All you need to know for now is that machine learning uses statistical techniques to give computer systems the ability to “learn” by being trained on existing data. Machine learning adds uncertainty. Underneath this uncertainty lies further uncertainty in the development process itself.
by AMIR NAJMI & MUKUND SUNDARARAJAN Data science is about decision making under uncertainty. Some of that uncertainty is the result of statistical inference, i.e., using a finite sample of observations for estimation. But there are other kinds of uncertainty, at least as important, that are not statistical in nature.
Because of this trifecta of errors, we need dynamic models that quantify the uncertainty inherent in our financial estimates and predictions. Practitioners in all social sciences, especially financial economics, use confidence intervals to quantify the uncertainty in their estimates and predictions.
If $Y$ at that point is (statistically and practically) significantly better than our current operating point, and that point is deemed acceptable, we update the system parameters to this better value. Crucially, it takes into account the uncertainty inherent in our experiments. Why experiment with several parameters concurrently?
For example, imagine a fantasy football site is considering displaying advanced player statistics. A ramp-up strategy may mitigate the risk of upsetting the site’s loyal users who perhaps have strong preferences for the current statistics that are shown. One reason to do ramp-up is to mitigate the risk of never before seen arms.
CIOs are readying for another demanding year, anticipating that artificial intelligence, economic uncertainty, business demands, and expectations for ever-increasing levels of speed will all be in play for 2024. He plans to scale his company’s experimental generative AI initiatives “and evolve into an AI-native enterprise” in 2024.
These circumstances have induced uncertainty across our entire business value chain,” says Venkat Gopalan, chief digital, data and technology officer, Belcorp. “As To address the challenges, the company has leveraged a combination of computer vision, neural networks, NLP, and fuzzy logic.
Unlike experimentation in some other areas, LSOS experiments present a surprising challenge to statisticians — even though we operate in the realm of “big data”, the statisticaluncertainty in our experiments can be substantial. We must therefore maintain statistical rigor in quantifying experimentaluncertainty.
Remember that the raw number is not the only important part, we would also measure statistical significance. They might deal with uncertainty, but they're not random. The result? The properties with professional photography had 2-3 times the number of bookings! Airbnb had enough data points to be confident in their results.
by MICHAEL FORTE Large-scale live experimentation is a big part of online product development. This means a small and growing product has to use experimentation differently and very carefully. This blog post is about experimentation in this regime. But these are not usually amenable to A/B experimentation.
Skomoroch proposes that managing ML projects are challenging for organizations because shipping ML projects requires an experimental culture that fundamentally changes how many companies approach building and shipping software. Yet, this challenge is not insurmountable. for what is and isn’t possible) to address these challenges.
In this post we explore why some standard statistical techniques to reduce variance are often ineffective in this “data-rich, information-poor” realm. Despite a very large number of experimental units, the experiments conducted by LSOS cannot presume statistical significance of all effects they deem practically significant.
LLMs like ChatGPT are trained on massive amounts of text data, allowing them to recognize patterns and statistical relationships within language. The AGI would need to handle uncertainty and make decisions with incomplete information. NLP techniques help them parse the nuances of human language, including grammar, syntax and context.
A geo experiment is an experiment where the experimental units are defined by geographic regions. Statistical power is traditionally given in terms of a probability function, but often a more intuitive way of describing power is by stating the expected precision of our estimates. They are non-overlapping geo-targetable regions.
It is important to make clear distinctions among each of these, and to advance the state of knowledge through concerted observation, modeling and experimentation. Note also that this account does not involve ambiguity due to statisticaluncertainty. We sliced and diced the experimental data in many many ways.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content