article thumbnail

Robust Experimentation and Testing | Reasons for Failure!

Occam's Razor

Since you're reading a blog on advanced analytics, I'm going to assume that you have been exposed to the magical and amazing awesomeness of experimentation and testing. And yet, chances are you really don’t know anyone directly who uses experimentation as a part of their regular business practice. Wah wah wah waaah.

article thumbnail

Experimentation and Testing: A Primer

Occam's Razor

This post is a primer on the delightful world of testing and experimentation (A/B, Multivariate, and a new term from me: Experience Testing). Experimentation and testing help us figure out we are wrong, quickly and repeatedly and if you think about it that is a great thing for our customers, and for our employers.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Bringing an AI Product to Market

O'Reilly on Data

Product Managers are responsible for the successful development, testing, release, and adoption of a product, and for leading the team that implements those milestones. Without clarity in metrics, it’s impossible to do meaningful experimentation. Ongoing monitoring of critical metrics is yet another form of experimentation.

Marketing 363
article thumbnail

Practical Skills for The AI Product Manager

O'Reilly on Data

AI PMs should enter feature development and experimentation phases only after deciding what problem they want to solve as precisely as possible, and placing the problem into one of these categories. Experimentation: It’s just not possible to create a product by building, evaluating, and deploying a single model.

article thumbnail

Beyond the Basics of A/B Tests: Highly Innovative Experimentation Tactics You Need to Know

Speaker: Timothy Chan, PhD., Head of Data Science

Are you ready to move beyond the basics and take a deep dive into the cutting-edge techniques that are reshaping the landscape of experimentation? Get ready to discover how these innovative approaches not only overcome the limitations of traditional A/B testing, but also unlock new insights and opportunities for optimization!

article thumbnail

End to End Statistics for Data Science

Analytics Vidhya

This article was published as a part of the Data Science Blogathon Introduction to Statistics Statistics is a type of mathematical analysis that employs quantified models and representations to analyse a set of experimental data or real-world studies. Data processing is […].

article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly on Data

ML apps need to be developed through cycles of experimentation: due to the constant exposure to data, we don’t learn the behavior of ML apps through logical reasoning but through empirical observation. An Overarching Concern: Correctness and Testing. This approach is not novel. Why did something break? Who did what and when?

IT 350
article thumbnail

Best Practices for Creating Long-Lasting and Continuous Discovery Habits

Speaker: Teresa Torres, Internationally Acclaimed Author, Speaker, and Coach at ProductTalk.org

Industry-wide, product teams have adopted discovery practices like customer interviews and experimentation merely for end-user satisfaction. As a result, many of us are still stuck in a project-world rut: research, usability testing, engineering, and a/b testing, ad nauseam.