article thumbnail

Business Strategies for Deploying Disruptive Tech: Generative AI and ChatGPT

Rocket-Powered Data Science

Those F’s are: Fragility, Friction, and FUD (Fear, Uncertainty, Doubt). encouraging and rewarding) a culture of experimentation across the organization. Encourage and reward a Culture of Experimentation that learns from failure, “ Test, or get fired! Test early and often. Expect continuous improvement.

Strategy 290
article thumbnail

What you need to know about product management for AI

O'Reilly on Data

Machine learning adds uncertainty. Underneath this uncertainty lies further uncertainty in the development process itself. There are strategies for dealing with all of this uncertainty–starting with the proverb from the early days of Agile: “ do the simplest thing that could possibly work.”

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

CIOs look to sharpen AI governance despite uncertainties

CIO Business Intelligence

He emphasizes there is no single document that captures all aspects of the risks and no clear authority to enforce use of generative AI, which is advancing on a daily basis.

article thumbnail

How to Set AI Goals

O'Reilly on Data

Technical competence results in reduced risk and uncertainty. Results are typically achieved through a scientific process of discovery, exploration, and experimentation, and these processes are not always predictable. There’s a lot of overlap between these factors.

article thumbnail

Towards optimal experimentation in online systems

The Unofficial Google Data Science Blog

Crucially, it takes into account the uncertainty inherent in our experiments. To find optimal values of two parameters experimentally, the obvious strategy would be to experiment with and update them in separate, sequential stages. In this section we’ll discuss how we approach these two kinds of uncertainty with QCQP.

article thumbnail

Uncertainties: Statistical, Representational, Interventional

The Unofficial Google Data Science Blog

by AMIR NAJMI & MUKUND SUNDARARAJAN Data science is about decision making under uncertainty. Some of that uncertainty is the result of statistical inference, i.e., using a finite sample of observations for estimation. But there are other kinds of uncertainty, at least as important, that are not statistical in nature.

article thumbnail

Machine Learning Product Management: Lessons Learned

Domino Data Lab

Pete indicates, in both his November 2018 and Strata London talks, that ML requires a more experimental approach than traditional software engineering. It is more experimental because it is “an approach that involves learning from data instead of programmatically following a set of human rules.”