Remove Interactive Remove Structured Data Remove Unstructured Data
article thumbnail

Beyond the hype: Do you really need an LLM for your data?

CIO Business Intelligence

They promise to revolutionize how we interact with data, generating human-quality text, understanding natural language and transforming data in ways we never thought possible. From automating tedious tasks to unlocking insights from unstructured data, the potential seems limitless. And guess what?

article thumbnail

CIOs contend with gen AI growing pains

CIO Business Intelligence

Soumya Seetharam, CDIO at Corning, said the manufacturer has been on its data journey for a few years, with more than 70% of its business transaction data being ingested into a data platform. But that’s only structured data, she emphasized.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The Rise of Unstructured Data

Cloudera

Here we mostly focus on structured vs unstructured data. In terms of representation, data can be broadly classified into two types: structured and unstructured. Structured data can be defined as data that can be stored in relational databases, and unstructured data as everything else.

article thumbnail

Have we reached the end of ‘too expensive’ for enterprise software?

CIO Business Intelligence

GenAI as ubiquitous technology In the coming years, AI will evolve from an explicit, opaque tool with direct user interaction to a seamlessly integrated component in the feature set. In many cases, this eliminates the need for specialized teams, extensive data labeling, and complex machine-learning pipelines.

Software 128
article thumbnail

Data governance in the age of generative AI

AWS Big Data

First, many LLM use cases rely on enterprise knowledge that needs to be drawn from unstructured data such as documents, transcripts, and images, in addition to structured data from data warehouses. As part of the transformation, the objects need to be treated to ensure data privacy (for example, PII redaction).

article thumbnail

Build a decentralized semantic search engine on heterogeneous data stores using autonomous agents

AWS Big Data

Large language models (LLMs) such as Anthropic Claude and Amazon Titan have the potential to drive automation across various business processes by processing both structured and unstructured data. For getting data from Amazon Redshift, we use the Anthropic Claude 2.0 This is unstructured data augmentation to the LLM.

article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

Data architecture has evolved significantly to handle growing data volumes and diverse workloads. Initially, data warehouses were the go-to solution for structured data and analytical workloads but were limited by proprietary storage formats and their inability to handle unstructured data.

Metadata 105