Remove key-components-successful-data-lake-strategy
article thumbnail

Expand data access through Apache Iceberg using Delta Lake UniForm on AWS

AWS Big Data

The landscape of big data management has been transformed by the rising popularity of open table formats such as Apache Iceberg, Apache Hudi, and Linux Foundation Delta Lake. These formats, designed to address the limitations of traditional data storage systems, have become essential in modern data architectures.

Metadata 122
article thumbnail

The Key Components of a Successful Data Lake Strategy

Data Virtualization

Reading Time: 6 minutes Data lake, by combining the flexibility of object storage with the scalability and agility of cloud platforms, are becoming an increasingly popular choice as an enterprise data repository. Whether you are on Amazon Web Services (AWS) and leverage AWS S3.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The Key Components of a Successful Data Lake Strategy

Data Virtualization

Reading Time: 6 minutes Data lake, by combining the flexibility of object storage with the scalability and agility of cloud platforms, are becoming an increasingly popular choice as an enterprise data repository. Whether you are on Amazon Web Services (AWS) and leverage AWS S3.

article thumbnail

Data’s dark secret: Why poor quality cripples AI and growth

CIO Business Intelligence

Data is the foundation of innovation, agility and competitive advantage in todays digital economy. As technology and business leaders, your strategic initiatives, from AI-powered decision-making to predictive insights and personalized experiences, are all fueled by data. Data quality is no longer a back-office concern.

article thumbnail

How ANZ Institutional Division built a federated data platform to enable their domain teams to build data products to support business outcomes

AWS Big Data

In today’s rapidly evolving financial landscape, data is the bedrock of innovation, enhancing customer and employee experiences and securing a competitive edge. Like many large financial institutions, ANZ Institutional Division operated with siloed data practices and centralized data management teams.

Metadata 105
article thumbnail

DataOps For Business Analytics Teams

DataKitchen

Data tables from IT and other data sources require a large amount of repetitive, manual work to be used in analytics. The data analytics function in large enterprises is generally distributed across departments and roles. Figure 1: Data analytics challenge – distributed teams must deliver value in collaboration.

article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

Large-scale data warehouse migration to the cloud is a complex and challenging endeavor that many organizations undertake to modernize their data infrastructure, enhance data management capabilities, and unlock new business opportunities.