This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
This is accomplished through tags, annotations, and metadata (TAM). Labeling, indexing, ease of discovery, and ease of access are essential if end-users are to find and benefit from the collection. My favorite approach to TAM creation and to modern data management in general is AI and machinelearning (ML).
Atanas Kiryakov presenting at KGF 2023 about Where Shall and Enterprise Start their Knowledge Graph Journey Only data integration through semantic metadata can drive business efficiency as “it’s the glue that turns knowledge graphs into hubs of metadata and content”.
Several factors are driving the adoption of knowledge graphs. Specifically, the increasing amount of data being generated and collected, and the need to make sense of it, and its use in artificial intelligence and machinelearning, which can benefit from the structured data and context provided by knowledge graphs.
Knowledge graphs, while not as well-known as other data management offerings, are a proven dynamic and scalable solution for addressing enterprise data management requirements across several verticals. As a hub for data, metadata, and content, they provide a unified, consistent, and unambiguous view of data scattered across different systems.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content