Remove Knowledge Discovery Remove Metadata Remove Modeling
article thumbnail

Ontotext Marketing Gets a Boost from Knowledge Graph Powered LLMs

Ontotext

Eventually, this led to the transformation of the project into forming an expansive knowledge graph containing all the marketing knowledge we’ve generated, ultimately benefiting the whole organization. OTKG models information about Ontotext, combined with content produced by different teams inside the organization.

article thumbnail

Three’s Company Too: Metadata, Data and Text Analysis

Ontotext

Metadata used to be a secret shared between system programmers and the data. Metadata described the data in terms of cardinality, data types such as strings vs integers, and primary or foreign key relationships. Inevitably, the information that could and needed to be expressed by metadata increased in complexity.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Knowledge Graphs 101: The Story (and Benefits) Behind the Hype

Ontotext

Knowledge graphs, while not as well-known as other data management offerings, are a proven dynamic and scalable solution for addressing enterprise data management requirements across several verticals. As a hub for data, metadata, and content, they provide a unified, consistent, and unambiguous view of data scattered across different systems.

article thumbnail

Are You Content with Your Organization’s Content Strategy?

Rocket-Powered Data Science

This is accomplished through tags, annotations, and metadata (TAM). Smart content includes labeled (tagged, annotated) metadata (TAM). The key to success is to start enhancing and augmenting content management systems (CMS) with additional features: semantic content and context. Collect, curate, and catalog (i.e.,

Strategy 267
article thumbnail

Why Establishing Data Context is the Key to Creating Competitive Advantage

Ontotext

Without metadata management and other data-related operations with semantic technologies, organizations often struggle to connect data sets and achieve a unified view of their enterprise data. Enter the Semantic Edge Era: How to Derive Value from Semantic Metadata The problem with Big Data is not the data itself.

article thumbnail

KGF 2023: Bikes To The Moon, Datastrophies, Abstract Art And A Knowledge Graph Forum To Embrace Them All

Ontotext

Content and data management solutions based on knowledge graphs are becoming increasingly important across enterprises. from Q&A with Tim Berners-Lee ) Finally, Sumit highlighted the importance of knowledge graphs to advance semantic data architecture models that allow unified data access and empower flexible data integration.

article thumbnail

The Semantic Web: 20 Years And a Handful of Enterprise Knowledge Graphs Later

Ontotext

One of its pillars are ontologies that represent explicit formal conceptual models, used to describe semantically both unstructured content and databases. Knowledge graphs (KG) came later, but quickly became a powerful driver for adoption of Semantic Web standards and all species of semantic technology implementing them.