This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Whether you need to drill down for a granular view of a particular data set or create a high-level summary to describe a particular system and the data it relies on, end-to-end data lineage must be documented and tracked, with an emphasis on the dynamics of data processing and movement as opposed to datastructures.
Metadata management. Users can centrally manage metadata, including searching, extracting, processing, storing, sharing metadata, and publishing metadata externally. The metadata here is focused on the dimensions, indicators, hierarchies, measures and other data required for business analysis.
Amazon Redshift is a fast, scalable, and fully managed cloud data warehouse that allows you to process and run your complex SQL analytics workloads on structured and semi-structureddata. Amazon DataZone natively supports data sharing for Amazon Redshift data assets. In the post_dq_results_to_datazone.py
Streaming jobs constantly ingest new data to synchronize across systems and can perform enrichment, transformations, joins, and aggregations across windows of time more efficiently. The following diagram illustrates an example workflow for CDC streaming ingestion and processing for unified customer profiles. versions).
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content