Remove Machine Learning Remove Predictive Modeling Remove Risk
article thumbnail

Why you should care about debugging machine learning models

O'Reilly on Data

For all the excitement about machine learning (ML), there are serious impediments to its widespread adoption. Not least is the broadening realization that ML models can fail. And that’s why model debugging, the art and science of understanding and fixing problems in ML models, is so critical to the future of ML.

article thumbnail

The key to operational AI: Modern data architecture

CIO Business Intelligence

Recent research shows that 67% of enterprises are using generative AI to create new content and data based on learned patterns; 50% are using predictive AI, which employs machine learning (ML) algorithms to forecast future events; and 45% are using deep learning, a subset of ML that powers both generative and predictive models.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Proposals for model vulnerability and security

O'Reilly on Data

Apply fair and private models, white-hat and forensic model debugging, and common sense to protect machine learning models from malicious actors. Like many others, I’ve known for some time that machine learning models themselves could pose security risks.

Modeling 278
article thumbnail

Automating the Automators: Shift Change in the Robot Factory

O'Reilly on Data

Building Models. A common task for a data scientist is to build a predictive model. You know the drill: pull some data, carve it up into features, feed it into one of scikit-learn’s various algorithms. You might say that the outcome of this exercise is a performant predictive model.

article thumbnail

Predictive Analytics Supports Citizen Data Scientists!

Smarten

To accomplish these goals, businesses are using predictive modeling and predictive analytics software and solutions to ensure dependable, confident decisions by leveraging data within and outside the walls of the organization and analyzing that data to predict outcomes in the future.

article thumbnail

The unreasonable importance of data preparation

O'Reilly on Data

On the machine learning side, we are entering what Andrei Karpathy, director of AI at Tesla, dubs the Software 2.0 John Myles White , data scientist and engineering manager at Facebook, wrote: “The biggest risk I see with data science projects is that analyzing data per se is generally a bad thing.

article thumbnail

Top 10 Analytics And Business Intelligence Trends For 2020

datapine

This is one of the major trends chosen by Gartner in their 2020 Strategic Technology Trends report , combining AI with autonomous things and hyperautomation, and concentrating on the level of security in which AI risks of developing vulnerable points of attacks. Industries harness predictive analytics in different ways.