Remove Measurement Remove Modeling Remove Risk
article thumbnail

Managing risk in machine learning

O'Reilly on Data

Considerations for a world where ML models are becoming mission critical. As the data community begins to deploy more machine learning (ML) models, I wanted to review some important considerations. Before I continue, it’s important to emphasize that machine learning is much more than building models. Model lifecycle management.

article thumbnail

AI Can Learn to Deceive: Anthropic Research

Analytics Vidhya

In a startling revelation, researchers at Anthropic have uncovered a disconcerting aspect of Large Language Models (LLMs) – their capacity to behave deceptively in specific situations, eluding conventional safety measures.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Preliminary Thoughts on the White House Executive Order on AI

O'Reilly on Data

While I am heartened to hear that the Executive Order on AI uses the Defense Production Act to compel disclosure of various data from the development of large AI models, these disclosures do not go far enough. These include: What data sources the model is trained on. Operational Metrics. Policy on use of user data for further training.

article thumbnail

12 Cloud Computing Risks & Challenges Businesses Are Facing In These Days

datapine

More and more CRM, marketing, and finance-related tools use SaaS business intelligence and technology, and even Adobe’s Creative Suite has adopted the model. This increases the risks that can arise during the implementation or management process. The next part of our cloud computing risks list involves costs.

Risk 237
article thumbnail

Digital KPIs: The secret to measuring transformational success

CIO Business Intelligence

Regardless of where organizations are in their digital transformation, CIOs must provide their board of directors, executive committees, and employees definitions of successful outcomes and measurable key performance indicators (KPIs). He suggests, “Choose what you measure carefully to achieve the desired results.

article thumbnail

Proposals for model vulnerability and security

O'Reilly on Data

Apply fair and private models, white-hat and forensic model debugging, and common sense to protect machine learning models from malicious actors. Like many others, I’ve known for some time that machine learning models themselves could pose security risks.

Modeling 225
article thumbnail

Bringing an AI Product to Market

O'Reilly on Data

These measures are commonly referred to as guardrail metrics , and they ensure that the product analytics aren’t giving decision-makers the wrong signal about what’s actually important to the business. When a measure becomes a target, it ceases to be a good measure ( Goodhart’s Law ). Any metric can and will be abused.

Marketing 363