Remove Measurement Remove Testing Remove Uncertainty
article thumbnail

Escaping POC Purgatory: Evaluation-Driven Development for AI Systems

O'Reilly on Data

Weve seen this across dozens of companies, and the teams that break out of this trap all adopt some version of Evaluation-Driven Development (EDD), where testing, monitoring, and evaluation drive every decision from the start. What breaks your app in production isnt always what you tested for in dev! How will you measure success?

Testing 174
article thumbnail

You Can’t Regulate What You Don’t Understand

O'Reilly on Data

If we want prosocial outcomes, we need to design and report on the metrics that explicitly aim for those outcomes and measure the extent to which they have been achieved. And they are stress testing and “ red teaming ” them to uncover vulnerabilities. That is a crucial first step, and we should take it immediately.

Metrics 360
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Business Strategies for Deploying Disruptive Tech: Generative AI and ChatGPT

Rocket-Powered Data Science

Those F’s are: Fragility, Friction, and FUD (Fear, Uncertainty, Doubt). Keep it agile, with short design, develop, test, release, and feedback cycles: keep it lean, and build on incremental changes. Test early and often. Encourage and reward a Culture of Experimentation that learns from failure, “ Test, or get fired!

Strategy 290
article thumbnail

How to Set AI Goals

O'Reilly on Data

Technical sophistication: Sophistication measures a team’s ability to use advanced tools and techniques (e.g., Technical competence: Competence measures a team’s ability to successfully deliver on initiatives and projects. Technical competence results in reduced risk and uncertainty.

article thumbnail

What you need to know about product management for AI

O'Reilly on Data

Machine learning adds uncertainty. This has serious implications for software testing, versioning, deployment, and other core development processes. Underneath this uncertainty lies further uncertainty in the development process itself. Measurement, tracking, and logging is less of a priority in enterprise software.

article thumbnail

Regulatory uncertainty overshadows gen AI despite pace of adoption

CIO Business Intelligence

It’s no surprise, then, that according to a June KPMG survey, uncertainty about the regulatory environment was the top barrier to implementing gen AI. So here are some of the strategies organizations are using to deploy gen AI in the face of regulatory uncertainty. We’re still in the pilot phases of evaluating LLMs,” he says.

article thumbnail

Why HR professionals struggle with big data

CIO Business Intelligence

This is due, on the one hand, to the uncertainty associated with handling confidential, sensitive data and, on the other hand, to a number of structural problems. If a database already exists, the available data must be tested and corrected. Companies should then monitor the measures and adjust them as necessary.