article thumbnail

Accelerate your migration to Amazon OpenSearch Service with Reindexing-from-Snapshot

AWS Big Data

In this post, we will introduce a new mechanism called Reindexing-from-Snapshot (RFS), and explain how it can address your concerns and simplify migrating to OpenSearch. Documents are parsed from the snapshot and then reindexed to the target cluster, so that performance impact to the source clusters is minimized during migration.

article thumbnail

Monitoring Apache Iceberg metadata layer using AWS Lambda, AWS Glue, and AWS CloudWatch

AWS Big Data

In this blog post, we’ll discuss how the metadata layer of Apache Iceberg can be used to make data lakes more efficient. You will learn about an open-source solution that can collect important metrics from the Iceberg metadata layer. This ensures that each change is tracked and reversible, enhancing data governance and auditability.

Metadata 126
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Apache Ozone Metadata Explained

Cloudera

As an important part of achieving better scalability, Ozone separates the metadata management among different services: . Ozone Manager (OM) service manages the metadata of the namespace such as volume, bucket and keys. Datanode service manages the metadata of blocks, containers and pipelines running on the datanode. .

article thumbnail

The AWS Glue Data Catalog now supports storage optimization of Apache Iceberg tables

AWS Big Data

Along with the Glue Data Catalog’s automated compaction feature, these storage optimizations can help you reduce metadata overhead, control storage costs, and improve query performance. Iceberg creates a new version called a snapshot for every change to the data in the table. Snapshots are timestamped versions of an iceberg table.

article thumbnail

Use AWS Glue ETL to perform merge, partition evolution, and schema evolution on Apache Iceberg

AWS Big Data

Apache Iceberg manages these schema changes in a backward-compatible way through its innovative metadata table evolution architecture. With Lake Formation, you can manage fine-grained access control for your data lake data on Amazon S3 and its metadata in the Data Catalog. Iceberg maintains the table state in metadata files.

Snapshot 132
article thumbnail

Amazon OpenSearch Service Under the Hood : OpenSearch Optimized Instances(OR1)

AWS Big Data

The following diagram illustrates an indexing flow involving a metadata update in OR1 During indexing operations, individual documents are indexed into Lucene and also appended to a write-ahead log also known as a translog. So how do snapshots work when we already have the data present on Amazon S3?

article thumbnail

Use Apache Iceberg in your data lake with Amazon S3, AWS Glue, and Snowflake

AWS Big Data

Iceberg tables maintain metadata to abstract large collections of files, providing data management features including time travel, rollback, data compaction, and full schema evolution, reducing management overhead. Snowflake integrates with AWS Glue Data Catalog to retrieve the snapshot location.

Data Lake 122