Remove Metadata Remove Snapshot Remove Statistics
article thumbnail

Build a high-performance quant research platform with Apache Iceberg

AWS Big Data

Iceberg offers distinct advantages through its metadata layer over Parquet, such as improved data management, performance optimization, and integration with various query engines. Icebergs table format separates data files from metadata files, enabling efficient data modifications without full dataset rewrites.

Metadata 111
article thumbnail

Monitoring Apache Iceberg metadata layer using AWS Lambda, AWS Glue, and AWS CloudWatch

AWS Big Data

In this blog post, we’ll discuss how the metadata layer of Apache Iceberg can be used to make data lakes more efficient. You will learn about an open-source solution that can collect important metrics from the Iceberg metadata layer. This ensures that each change is tracked and reversible, enhancing data governance and auditability.

Metadata 126
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Simplify data integration with AWS Glue and zero-ETL to Amazon SageMaker Lakehouse

AWS Big Data

The company is looking for an efficient, scalable, and cost-effective solution to collecting and ingesting data from ServiceNow, ensuring continuous near real-time replication, automated availability of new data attributes, robust monitoring capabilities to track data load statistics, and reliable data lake foundation supporting data versioning.

article thumbnail

Hadoop Data Mining Tools Can Enhance The Value Of Digital Assets

Smart Data Collective

Some of the benefits are detailed below: Optimizing metadata for greater reach and branding benefits. One of the most overlooked factors is metadata. Metadata is important for numerous reasons. Search engines crawl metadata of image files, videos and other visual creative when they are indexing websites.

article thumbnail

Use Apache Iceberg in your data lake with Amazon S3, AWS Glue, and Snowflake

AWS Big Data

Iceberg tables maintain metadata to abstract large collections of files, providing data management features including time travel, rollback, data compaction, and full schema evolution, reducing management overhead. Snowflake integrates with AWS Glue Data Catalog to retrieve the snapshot location.

Data Lake 121
article thumbnail

Keeping Small Queries Fast – Short query optimizations in Apache Impala

Cloudera

Exhaustive cost-based query planning depends on having up to date and reliable statistics which are expensive to generate and even harder to maintain, making their existence unrealistic in real workloads. Metadata Caching. See the performance results below for an example of how metadata caching helps reduce latency.

article thumbnail

Choosing an open table format for your transactional data lake on AWS

AWS Big Data

Iceberg doesn’t optimize file sizes or run automatic table services (for example, compaction or clustering) when writing, so streaming ingestion will create many small data and metadata files. Offers different query types , allowing to prioritize data freshness (Snapshot Query) or read performance (Read Optimized Query).

Data Lake 130