Remove Metadata Remove Snapshot Remove Testing
article thumbnail

Build a high-performance quant research platform with Apache Iceberg

AWS Big Data

Iceberg offers distinct advantages through its metadata layer over Parquet, such as improved data management, performance optimization, and integration with various query engines. Icebergs table format separates data files from metadata files, enabling efficient data modifications without full dataset rewrites.

Metadata 111
article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

Central to a transactional data lake are open table formats (OTFs) such as Apache Hudi , Apache Iceberg , and Delta Lake , which act as a metadata layer over columnar formats. XTable isn’t a new table format but provides abstractions and tools to translate the metadata associated with existing formats.

Metadata 105
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Apache Ozone Metadata Explained

Cloudera

As an important part of achieving better scalability, Ozone separates the metadata management among different services: . Ozone Manager (OM) service manages the metadata of the namespace such as volume, bucket and keys. Datanode service manages the metadata of blocks, containers and pipelines running on the datanode. .

article thumbnail

Use AWS Glue ETL to perform merge, partition evolution, and schema evolution on Apache Iceberg

AWS Big Data

Apache Iceberg manages these schema changes in a backward-compatible way through its innovative metadata table evolution architecture. With Lake Formation, you can manage fine-grained access control for your data lake data on Amazon S3 and its metadata in the Data Catalog. Iceberg maintains the table state in metadata files.

Snapshot 132
article thumbnail

Use Apache Iceberg in a data lake to support incremental data processing

AWS Big Data

Apache Iceberg is an open table format for very large analytic datasets, which captures metadata information on the state of datasets as they evolve and change over time. Apache Iceberg addresses customer needs by capturing rich metadata information about the dataset at the time the individual data files are created.

Data Lake 136
article thumbnail

How Cloudinary transformed their petabyte scale streaming data lake with Apache Iceberg and AWS Analytics

AWS Big Data

Many of the tests to check performance and volumes of data scanned have used Athena because it provides a simple to use, fully serverless, cost effective, interface without the need to setup infrastructure. When evolving such a partition definition, the data in the table prior to the change is unaffected, as is its metadata.

Data Lake 126
article thumbnail

Apache Iceberg optimization: Solving the small files problem in Amazon EMR

AWS Big Data

Iceberg tables store metadata in manifest files. As the number of data files increase, the amount of metadata stored in these manifest files also increases, leading to longer query planning time. The query runtime also increases because it’s proportional to the number of data or metadata file read operations. with Spark 3.3.2,