Remove Metrics Remove Predictive Modeling Remove Statistics
article thumbnail

Quick Guide to Evaluation Metrics for Supervised and Unsupervised Machine Learning

Analytics Vidhya

Introduction Machine learning is about building a predictive model using historical data. The post Quick Guide to Evaluation Metrics for Supervised and Unsupervised Machine Learning appeared first on Analytics Vidhya. This article was published as a part of the Data Science Blogathon.

article thumbnail

11 Important Model Evaluation Metrics for Machine Learning Everyone should know

Analytics Vidhya

Overview Evaluating a model is a core part of building an effective machine learning model There are several evaluation metrics, like confusion matrix, cross-validation, The post 11 Important Model Evaluation Metrics for Machine Learning Everyone should know appeared first on Analytics Vidhya.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Top 5 Statistical Techniques in Python

Sisense

A data scientist must be skilled in many arts: math and statistics, computer science, and domain knowledge. Statistics and programming go hand in hand. Mastering statistical techniques and knowing how to implement them via a programming language are essential building blocks for advanced analytics. Linear regression.

article thumbnail

What is business analytics? Using data to improve business outcomes

CIO Business Intelligence

Business analytics is the practical application of statistical analysis and technologies on business data to identify and anticipate trends and predict business outcomes. Data analytics is used across disciplines to find trends and solve problems using data mining , data cleansing, data transformation, data modeling, and more.

article thumbnail

What Is The Difference Between Business Intelligence And Analytics?

datapine

While some experts try to underline that BA focuses, also, on predictive modeling and advanced statistics to evaluate what will happen in the future, BI is more focused on the present moment of data, making the decision based on current insights. What Is Business Intelligence And Analytics?

article thumbnail

Why you should care about debugging machine learning models

O'Reilly on Data

If a model is going to be used on all kinds of people, it’s best to ensure the training data has a representative distribution of all kinds of people as well. Interpretable ML models and explainable ML. The debugging techniques we propose should work on almost any kind of ML-based predictive model.

article thumbnail

Humans-in-the-loop forecasting: integrating data science and business planning

The Unofficial Google Data Science Blog

Nor can we learn prediction intervals across a large set of parallel time series, since we are trying to generate intervals for a single global time series. With those stakes and the long forecast horizon, we do not rely on a single statistical model based on historical trends.