Remove Metrics Remove Statistics Remove Uncertainty
article thumbnail

What you need to know about product management for AI

O'Reilly on Data

All you need to know for now is that machine learning uses statistical techniques to give computer systems the ability to “learn” by being trained on existing data. Machine learning adds uncertainty. Underneath this uncertainty lies further uncertainty in the development process itself.

article thumbnail

The Lean Analytics Cycle: Metrics > Hypothesis > Experiment > Act

Occam's Razor

To win in business you need to follow this process: Metrics > Hypothesis > Experiment > Act. We are far too enamored with data collection and reporting the standard metrics we love because others love them because someone else said they were nice so many years ago. That metric is tied to a KPI.

Metrics 157
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Uncertainties: Statistical, Representational, Interventional

The Unofficial Google Data Science Blog

by AMIR NAJMI & MUKUND SUNDARARAJAN Data science is about decision making under uncertainty. Some of that uncertainty is the result of statistical inference, i.e., using a finite sample of observations for estimation. But there are other kinds of uncertainty, at least as important, that are not statistical in nature.

article thumbnail

Humans-in-the-loop forecasting: integrating data science and business planning

The Unofficial Google Data Science Blog

This classification is based on the purpose, horizon, update frequency and uncertainty of the forecast. With those stakes and the long forecast horizon, we do not rely on a single statistical model based on historical trends. These characteristics of the problem drive the forecasting approaches.

article thumbnail

Why HR professionals struggle with big data

CIO Business Intelligence

In addition, they can use statistical methods, algorithms and machine learning to more easily establish correlations and patterns, and thus make predictions about future developments and scenarios. Most use master data to make daily processes more efficient and to optimize the use of existing resources.

article thumbnail

Three Emerging Analytics Products Derived from Value-driven Data Innovation and Insights Discovery in the Enterprise

Rocket-Powered Data Science

This was not a scientific or statistically robust survey, so the results are not necessarily reliable, but they are interesting and provocative. I recently saw an informal online survey that asked users which types of data (tabular, text, images, or “other”) are being used in their organization’s analytics applications.

article thumbnail

In AI we trust? Why we Need to Talk About Ethics and Governance (part 2 of 2)

Cloudera

Systems should be designed with bias, causality and uncertainty in mind. Uncertainty is a measure of our confidence in the predictions made by a system. We need to understand and provide the greatest human oversight on systems with the greatest levels of uncertainty. System Design. Human Judgement & Oversight. Model Drift.