Remove Metrics Remove Testing Remove Uncertainty
article thumbnail

Escaping POC Purgatory: Evaluation-Driven Development for AI Systems

O'Reilly on Data

Weve seen this across dozens of companies, and the teams that break out of this trap all adopt some version of Evaluation-Driven Development (EDD), where testing, monitoring, and evaluation drive every decision from the start. What breaks your app in production isnt always what you tested for in dev! The way out? How do we do so?

Testing 174
article thumbnail

The Lean Analytics Cycle: Metrics > Hypothesis > Experiment > Act

Occam's Razor

To win in business you need to follow this process: Metrics > Hypothesis > Experiment > Act. We are far too enamored with data collection and reporting the standard metrics we love because others love them because someone else said they were nice so many years ago. That metric is tied to a KPI.

Metrics 157
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

You Can’t Regulate What You Don’t Understand

O'Reilly on Data

If we want prosocial outcomes, we need to design and report on the metrics that explicitly aim for those outcomes and measure the extent to which they have been achieved. And they are stress testing and “ red teaming ” them to uncover vulnerabilities. There is no simple way to solve the alignment problem.

Metrics 359
article thumbnail

What you need to know about product management for AI

O'Reilly on Data

Machine learning adds uncertainty. This has serious implications for software testing, versioning, deployment, and other core development processes. Underneath this uncertainty lies further uncertainty in the development process itself. Models within AI products change the same world they try to predict.

article thumbnail

AI Product Management After Deployment

O'Reilly on Data

In Bringing an AI Product to Market , we distinguished the debugging phase of product development from pre-deployment evaluation and testing. During testing and evaluation, application performance is important, but not critical to success. require not only disclosure, but also monitored testing. Debugging AI Products.

article thumbnail

3 ways to avoid the generative AI ROI doom loop

CIO Business Intelligence

He did not get to the point of 100% specificity and confidence about exactly how this makes him happier and more productive through a quick one-and-done test of a use case or two. Make ‘soft metrics’ matter Imagine an experienced manager with an “open door policy.” Each workflow is aimed at a problem or opportunity to be solved.

ROI 72
article thumbnail

Bridging the Gap: How ‘Data in Place’ and ‘Data in Use’ Define Complete Data Observability

DataKitchen

The uncertainty of not knowing where data issues will crop up next and the tiresome game of ‘who’s to blame’ when pinpointing the failure. In the context of Data in Place, validating data quality automatically with Business Domain Tests is imperative for ensuring the trustworthiness of your data assets.

Testing 169