Remove Modeling Remove Optimization Remove Unstructured Data
article thumbnail

Unbundling the Graph in GraphRAG

O'Reilly on Data

Reasons for using RAG are clear: large language models (LLMs), which are effectively syntax engines, tend to “hallucinate” by inventing answers from pieces of their training data. Also, in place of expensive retraining or fine-tuning for an LLM, this approach allows for quick data updates at low cost. at Facebook—both from 2020.

article thumbnail

How AI orchestration has become more important than the models themselves

CIO Business Intelligence

Large language models (LLMs) just keep getting better. In just about two years since OpenAI jolted the news cycle with the introduction of ChatGPT, weve already seen the launch and subsequent upgrades of dozens of competing models. From Llama3.1 to Gemini to Claude3.5 From Llama3.1 to Gemini to Claude3.5

Modeling 116
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Beyond the hype: Do you really need an LLM for your data?

CIO Business Intelligence

The hype around large language models (LLMs) is undeniable. They promise to revolutionize how we interact with data, generating human-quality text, understanding natural language and transforming data in ways we never thought possible. In retail, they can personalize recommendations and optimize marketing campaigns.

article thumbnail

Comprehensive data management for AI: The next-gen data management engine that will drive AI to new heights

CIO Business Intelligence

The core of their problem is applying AI technology to the data they already have, whether in the cloud, on their premises, or more likely both. Imagine that you’re a data engineer. The data is spread out across your different storage systems, and you don’t know what is where. What does the next generation of AI workloads need?

article thumbnail

Generative AI is pushing unstructured data to center stage

CIO Business Intelligence

When I think about unstructured data, I see my colleague Rob Gerbrandt (an information governance genius) walking into a customer’s conference room where tubes of core samples line three walls. While most of us would see dirt and rock, Rob sees unstructured data. have encouraged the creation of unstructured data.

article thumbnail

The Rise of Unstructured Data

Cloudera

Here we mostly focus on structured vs unstructured data. In terms of representation, data can be broadly classified into two types: structured and unstructured. Structured data can be defined as data that can be stored in relational databases, and unstructured data as everything else.

article thumbnail

Escaping POC Purgatory: Evaluation-Driven Development for AI Systems

O'Reilly on Data

Two big things: They bring the messiness of the real world into your system through unstructured data. Now with LLMs, AI, and their inherent flip-floppiness, an array of new issues arises: Nondeterminism : How can we build reliable and consistent software using models that are nondeterministic and unpredictable?

Testing 168