Remove Modeling Remove Predictive Modeling Remove Risk
article thumbnail

What is Model Risk and Why Does it Matter?

DataRobot Blog

With the big data revolution of recent years, predictive models are being rapidly integrated into more and more business processes. This provides a great amount of benefit, but it also exposes institutions to greater risk and consequent exposure to operational losses. What is a model?

Risk 111
article thumbnail

How to use foundation models and trusted governance to manage AI workflow risk

IBM Big Data Hub

As more businesses use AI systems and the technology continues to mature and change, improper use could expose a company to significant financial, operational, regulatory and reputational risks. It includes processes that trace and document the origin of data, models and associated metadata and pipelines for audits.

Risk 70
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Minding Your Models

DataRobot Blog

Using AI-based models increases your organization’s revenue, improves operational efficiency, and enhances client relationships. You need to know where your deployed models are, what they do, the data they use, the results they produce, and who relies upon their results. That requires a good model governance framework.

Modeling 105
article thumbnail

Proposals for model vulnerability and security

O'Reilly on Data

Apply fair and private models, white-hat and forensic model debugging, and common sense to protect machine learning models from malicious actors. Like many others, I’ve known for some time that machine learning models themselves could pose security risks.

Modeling 226
article thumbnail

Assisted Predictive Modeling for Simple Business Analytics!

Smarten

Just Simple, Assisted Predictive Modeling for Every Business User! You can’t get a business loan, join with a business partner, successfully bid on a project, open a new location, hire the right employees or plan for the future without predictive analytics. No Guesswork!

article thumbnail

Why you should care about debugging machine learning models

O'Reilly on Data

Not least is the broadening realization that ML models can fail. And that’s why model debugging, the art and science of understanding and fixing problems in ML models, is so critical to the future of ML. Because all ML models make mistakes, everyone who cares about ML should also care about model debugging. [1]

article thumbnail

AI for Climate Change and Weather Risk

DataRobot Blog

The DataRobot AI Cloud Platform can also help identify infrastructure and buildings at risk of damage from natural disasters. DataRobot enables the user to easily combine multiple datasets into a single training dataset for AI modeling. Quickly and Easily Build Models. In 2017, Hurricane Harvey struck the U.S. The Datasets.

Risk 52