Remove Modeling Remove Risk Remove Testing
article thumbnail

Risk Management for AI Chatbots

O'Reilly on Data

Doing so means giving the general public a freeform text box for interacting with your AI model. Welcome to your company’s new AI risk management nightmare. ” ) With a chatbot, the web form passes an end-user’s freeform text input—a “prompt,” or a request to act—to a generative AI model.

article thumbnail

Why you should care about debugging machine learning models

O'Reilly on Data

Not least is the broadening realization that ML models can fail. And that’s why model debugging, the art and science of understanding and fixing problems in ML models, is so critical to the future of ML. Because all ML models make mistakes, everyone who cares about ML should also care about model debugging. [1]

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Bringing an AI Product to Market

O'Reilly on Data

Product Managers are responsible for the successful development, testing, release, and adoption of a product, and for leading the team that implements those milestones. You must detect when the model has become stale, and retrain it as necessary. The Core Responsibilities of the AI Product Manager. The AI Product Development Process.

Marketing 363
article thumbnail

Preliminary Thoughts on the White House Executive Order on AI

O'Reilly on Data

While I am heartened to hear that the Executive Order on AI uses the Defense Production Act to compel disclosure of various data from the development of large AI models, these disclosures do not go far enough. These include: What data sources the model is trained on. Operational Metrics.

article thumbnail

Report: AI giants grow impatient with UK safety tests

CIO Business Intelligence

Key AI companies have told the UK government to speed up its safety testing for their systems, raising questions about future government initiatives that too may hinge on technology providers opening up generative AI models to tests before new releases hit the public.

Testing 124
article thumbnail

Our Favorite Questions

O'Reilly on Data

Taking the time to work this out is like building a mathematical model: if you understand what a company truly does, you don’t just get a better understanding of the present, but you can also predict the future. Since I work in the AI space, people sometimes have a preconceived notion that I’ll only talk about data and models.

article thumbnail

Generative AI in the Enterprise

O'Reilly on Data

And everyone has opinions about how these language models and art generation programs are going to change the nature of work, usher in the singularity, or perhaps even doom the human race. 16% of respondents working with AI are using open source models. A few have even tried out Bard or Claude, or run LLaMA 1 on their laptop.