Remove Modeling Remove Testing Remove Uncertainty
article thumbnail

Escaping POC Purgatory: Evaluation-Driven Development for AI Systems

O'Reilly on Data

Weve seen this across dozens of companies, and the teams that break out of this trap all adopt some version of Evaluation-Driven Development (EDD), where testing, monitoring, and evaluation drive every decision from the start. What breaks your app in production isnt always what you tested for in dev! The way out?

Testing 174
article thumbnail

Business Strategies for Deploying Disruptive Tech: Generative AI and ChatGPT

Rocket-Powered Data Science

While generative AI has been around for several years , the arrival of ChatGPT (a conversational AI tool for all business occasions, built and trained from large language models) has been like a brilliant torch brought into a dark room, illuminating many previously unseen opportunities. So, if you have 1 trillion data points (g.,

Strategy 290
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Getting the timing right at Setterwalls to invest in AI support

CIO Business Intelligence

With backing from management and great interest outside the organization, the agency, started a pilot project where three AI tools specially designed for lawyers were tested, compared, and evaluated. “We We had a fairly large evaluation group that test drove them side by side,” he says. Another is research.

article thumbnail

You Can’t Regulate What You Don’t Understand

O'Reilly on Data

The world changed on November 30, 2022 as surely as it did on August 12, 1908 when the first Model T left the Ford assembly line. The creators of generative AI systems and Large Language Models already have tools for monitoring, modifying, and optimizing them.

Metrics 360
article thumbnail

Easily Build an Optimization App and Empower Your Data

Speaker: Gertjan de Lange

If the last few years have illustrated one thing, it’s that modeling techniques, forecasting strategies, and data optimization are imperative for solving complex business problems and weathering uncertainty. Experience how efficient you can be when you fit your model with actionable data. Watch this exclusive demo today!

article thumbnail

What you need to know about product management for AI

O'Reilly on Data

Instead of writing code with hard-coded algorithms and rules that always behave in a predictable manner, ML engineers collect a large number of examples of input and output pairs and use them as training data for their models. Machine learning adds uncertainty. Models also become stale and outdated over time.

article thumbnail

AI Product Management After Deployment

O'Reilly on Data

Similarly, in “ Building Machine Learning Powered Applications: Going from Idea to Product ,” Emmanuel Ameisen states: “Indeed, exposing a model to users in production comes with a set of challenges that mirrors the ones that come with debugging a model.”. Debugging AI Products.