article thumbnail

What is Model Risk and Why Does it Matter?

DataRobot Blog

With the big data revolution of recent years, predictive models are being rapidly integrated into more and more business processes. This provides a great amount of benefit, but it also exposes institutions to greater risk and consequent exposure to operational losses.

Risk 111
article thumbnail

Proposals for model vulnerability and security

O'Reilly on Data

Apply fair and private models, white-hat and forensic model debugging, and common sense to protect machine learning models from malicious actors. Like many others, I’ve known for some time that machine learning models themselves could pose security risks. they can train their own surrogate model.

Modeling 241
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Automating the Automators: Shift Change in the Robot Factory

O'Reilly on Data

Building Models. A common task for a data scientist is to build a predictive model. You’ll try this with a few other algorithms, and their respective tuning parameters–maybe even break out TensorFlow to build a custom neural net along the way–and the winning model will be the one that heads to production.

article thumbnail

How to Set AI Goals

O'Reilly on Data

Technical competence results in reduced risk and uncertainty. AI initiatives may also require significant considerations for governance, compliance, ethics, cost, and risk. There’s a lot of overlap between these factors. Defining them precisely isn’t as important as the fact that you need all three.

article thumbnail

What is predictive analytics? Transforming data into future insights

CIO Business Intelligence

With predictive analytics, organizations can find and exploit patterns contained within data in order to detect risks and opportunities. Models can be designed, for instance, to discover relationships between various behavior factors. Predictive models can help businesses attract, retain, and nurture their most valued customers.

article thumbnail

Why you should care about debugging machine learning models

O'Reilly on Data

Because all ML models make mistakes, everyone who cares about ML should also care about model debugging. [1] 1] This includes C-suite executives, front-line data scientists, and risk, legal, and compliance personnel. That’s where model debugging comes in. Interpretable ML models and explainable ML.

article thumbnail

How Big Data Impacts The Finance And Banking Industries

Smart Data Collective

Here are a few of the advantages of Big Data in the banking and financial industry: Improvement in risk management operations. Big Data can efficiently enhance the ways firms utilize predictive models in the risk management discipline. Big Data provides financial and banking organizations with better risk coverage.

Big Data 145