Remove product data-lineage
article thumbnail

Bigeye Enable Monitoring, Quality and Lineage of Data

David Menninger's Analyst Perspectives

I previously explained that data observability software has become a critical component of data-driven decision-making. Data observability addresses one of the most significant impediments to generating value from data by providing an environment for monitoring the quality and reliability of data on a continual basis.

article thumbnail

The state of data quality in 2020

O'Reilly on Data

We suspected that data quality was a topic brimming with interest. The responses show a surfeit of concerns around data quality and some uncertainty about how best to address those concerns. Key survey results: The C-suite is engaged with data quality. Data quality might get worse before it gets better.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Why companies are in need of data lineage solutions

O'Reilly on Data

The O’Reilly Data Show Podcast: Neelesh Salian on data lineage, data governance, and evolving data platforms. In this episode of the Data Show , I spoke with Neelesh Salian , software engineer at Stitch Fix , a company that combines machine learning and human expertise to personalize shopping.

article thumbnail

The Symbiotic Relationship Between Data Governance and AI

David Menninger's Analyst Perspectives

Data governance has always been a critical part of the data and analytics landscape. However, for many years, it was seen as a preventive function to limit access to data and ensure compliance with security and data privacy requirements. Data governance is integral to an overall data intelligence strategy.

article thumbnail

Octopai Acquisition Enhances Metadata Management to Trust Data Across Entire Data Estate

Cloudera

We are excited to announce the acquisition of Octopai , a leading data lineage and catalog platform that provides data discovery and governance for enterprises to enhance their data-driven decision making.

article thumbnail

Becoming a machine learning company means investing in foundational technologies

O'Reilly on Data

Companies successfully adopt machine learning either by building on existing data products and services, or by modernizing existing models and algorithms. In this post, I share slides and notes from a keynote I gave at the Strata Data Conference in London earlier this year. Use ML to unlock new data types—e.g.,

article thumbnail

Deep automation in machine learning

O'Reilly on Data

We need to do more than automate model building with autoML; we need to automate tasks at every stage of the data pipeline. In a previous post , we talked about applications of machine learning (ML) to software development, which included a tour through sample tools in data science and for managing data infrastructure.