article thumbnail

Comprehensive data management for AI: The next-gen data management engine that will drive AI to new heights

CIO Business Intelligence

Managing the lifecycle of AI data, from ingestion to processing to storage, requires sophisticated data management solutions that can manage the complexity and volume of unstructured data. As the leader in unstructured data storage, customers trust NetApp with their most valuable data assets.

article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

Initially, data warehouses were the go-to solution for structured data and analytical workloads but were limited by proprietary storage formats and their inability to handle unstructured data. Querying all snapshots, we can see that we created three snapshots with overwrites after the initial one.

Metadata 105
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Monitoring Apache Iceberg metadata layer using AWS Lambda, AWS Glue, and AWS CloudWatch

AWS Big Data

In the era of big data, data lakes have emerged as a cornerstone for storing vast amounts of raw data in its native format. They support structured, semi-structured, and unstructured data, offering a flexible and scalable environment for data ingestion from multiple sources.

Metadata 126
article thumbnail

Backtesting index rebalancing arbitrage with Amazon EMR and Apache Iceberg

AWS Big Data

Terminology Let’s first discuss some of the terminology used in this post: Research data lake on Amazon S3 – A data lake is a large, centralized repository that allows you to manage all your structured and unstructured data at any scale. Create an Iceberg table and load the test data from Amazon S3 into the table.

Snapshot 105
article thumbnail

Use Apache Iceberg in a data lake to support incremental data processing

AWS Big Data

How Apache Iceberg addresses what customers want in modern data lakes More and more customers are building data lakes, with structured and unstructured data, to support many users, applications, and analytics tools. The snapshot points to the manifest list.

Data Lake 136
article thumbnail

Discover and Explore Data Faster with the CDP DDE Template

Cloudera

DDE also makes it much easier for application developers or data workers to self-service and get started with building insight applications or exploration services based on text or other unstructured data (i.e. data best served through Apache Solr). See the snapshot below. What does DDE entail? Restore collection.

article thumbnail

Migrate an existing data lake to a transactional data lake using Apache Iceberg

AWS Big Data

A data lake is a centralized repository that you can use to store all your structured and unstructured data at any scale. You can store your data as-is, without having to first structure the data and then run different types of analytics for better business insights. Supported formats are Avro, Parquet, and ORC.

Data Lake 122