Remove Data Governance Remove Data Lake Remove Reference
article thumbnail

Unleash deeper insights with Amazon Redshift data sharing for data lake tables

AWS Big Data

Over the years, this customer-centric approach has led to the introduction of groundbreaking features such as zero-ETL , data sharing , streaming ingestion , data lake integration , Amazon Redshift ML , Amazon Q generative SQL , and transactional data lake capabilities.

Data Lake 101
article thumbnail

Seamless integration of data lake and data warehouse using Amazon Redshift Spectrum and Amazon DataZone

AWS Big Data

Unlocking the true value of data often gets impeded by siloed information. Traditional data management—wherein each business unit ingests raw data in separate data lakes or warehouses—hinders visibility and cross-functional analysis. Amazon DataZone natively supports data sharing for Amazon Redshift data assets.

Data Lake 108
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data governance in the age of generative AI

AWS Big Data

Data is your generative AI differentiator, and a successful generative AI implementation depends on a robust data strategy incorporating a comprehensive data governance approach. Data governance is a critical building block across all these approaches, and we see two emerging areas of focus.

article thumbnail

Streamline AI-driven analytics with governance: Integrating Tableau with Amazon DataZone

AWS Big Data

With this integration, you can now seamlessly query your governed data lake assets in Amazon DataZone using popular business intelligence (BI) and analytics tools, including partner solutions like Tableau. Refer to the detailed blog post on how you can use this to connect through various other tools.

Analytics 103
article thumbnail

Choosing an open table format for your transactional data lake on AWS

AWS Big Data

A modern data architecture enables companies to ingest virtually any type of data through automated pipelines into a data lake, which provides highly durable and cost-effective object storage at petabyte or exabyte scale.

Data Lake 125
article thumbnail

Building end-to-end data lineage for one-time and complex queries using Amazon Athena, Amazon Redshift, Amazon Neptune and dbt

AWS Big Data

One-time and complex queries are two common scenarios in enterprise data analytics. Complex queries, on the other hand, refer to large-scale data processing and in-depth analysis based on petabyte-level data warehouses in massive data scenarios. file, enter the preprocessing code for the raw lineage data.

article thumbnail

Design a data mesh pattern for Amazon EMR-based data lakes using AWS Lake Formation with Hive metastore federation

AWS Big Data

In this post, we delve into the key aspects of using Amazon EMR for modern data management, covering topics such as data governance, data mesh deployment, and streamlined data discovery. Organizations have multiple Hive data warehouses across EMR clusters, where the metadata gets generated.