Remove Data Lake Remove Data Warehouse Remove Reference
article thumbnail

Load data incrementally from transactional data lakes to data warehouses

AWS Big Data

Data lakes and data warehouses are two of the most important data storage and management technologies in a modern data architecture. Data lakes store all of an organization’s data, regardless of its format or structure.

Data Lake 117
article thumbnail

Seamless integration of data lake and data warehouse using Amazon Redshift Spectrum and Amazon DataZone

AWS Big Data

Unlocking the true value of data often gets impeded by siloed information. Traditional data management—wherein each business unit ingests raw data in separate data lakes or warehouses—hinders visibility and cross-functional analysis. Business units access clean, standardized data.

Data Lake 104
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Implementing a Pharma Data Mesh using DataOps

DataKitchen

Figure 3 shows an example processing architecture with data flowing in from internal and external sources. Each data source is updated on its own schedule, for example, daily, weekly or monthly. The data scientists and analysts have what they need to build analytics for the user. The new Recipes run, and BOOM! Conclusion.

article thumbnail

Query your Iceberg tables in data lake using Amazon Redshift (Preview)

AWS Big Data

Amazon Redshift is a fast, fully managed petabyte-scale cloud data warehouse that makes it simple and cost-effective to analyze all your data using standard SQL and your existing business intelligence (BI) tools. Amazon Redshift also supports querying nested data with complex data types such as struct, array, and map.

Data Lake 103
article thumbnail

Complexity Drives Costs: A Look Inside BYOD and Azure Data Lakes

Jet Global

That stands for “bring your own database,” and it refers to a model in which core ERP data are replicated to a separate standalone database used exclusively for reporting. OLAP reporting has traditionally relied on a data warehouse. Option 3: Azure Data Lakes. Data lakes are not a mature technology.

article thumbnail

Accelerate Amazon Redshift Data Lake queries with AWS Glue Data Catalog Column Statistics

AWS Big Data

Amazon Redshift enables you to efficiently query and retrieve structured and semi-structured data from open format files in Amazon S3 data lake without having to load the data into Amazon Redshift tables. Amazon Redshift extends SQL capabilities to your data lake, enabling you to run analytical queries.

Data Lake 101
article thumbnail

Navigating Data Entities, BYOD, and Data Lakes in Microsoft Dynamics

Jet Global

Its solution was to replicate data from the production database, using data entities, into a traditional relational database. Microsoft referred to this approach as “bring your own database” (BYOD). For more sophisticated multidimensional reporting functions, however, a more advanced approach to staging data is required.