Remove Data Lake Remove Machine Learning Remove Reference
article thumbnail

How to Implement Data Engineering in Practice?

Analytics Vidhya

Image Source: GitHub Table of Contents What is Data Engineering? Components of Data Engineering Object Storage Object Storage MinIO Install Object Storage MinIO Data Lake with Buckets Demo Data Lake Management Conclusion References What is Data Engineering?

Data Lake 391
article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

Initially, data warehouses were the go-to solution for structured data and analytical workloads but were limited by proprietary storage formats and their inability to handle unstructured data. Eventually, transactional data lakes emerged to add transactional consistency and performance of a data warehouse to the data lake.

Metadata 105
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Recap of Amazon Redshift key product announcements in 2024

AWS Big Data

Today, Amazon Redshift is used by customers across all industries for a variety of use cases, including data warehouse migration and modernization, near real-time analytics, self-service analytics, data lake analytics, machine learning (ML), and data monetization.

article thumbnail

Unleash deeper insights with Amazon Redshift data sharing for data lake tables

AWS Big Data

Over the years, this customer-centric approach has led to the introduction of groundbreaking features such as zero-ETL , data sharing , streaming ingestion , data lake integration , Amazon Redshift ML , Amazon Q generative SQL , and transactional data lake capabilities.

Data Lake 120
article thumbnail

The next generation of Amazon SageMaker: The center for all your data, analytics, and AI

AWS Big Data

Our customers are telling us that they are seeing their analytics and AI workloads increasingly converge around a lot of the same data, and this is changing how they are using analytics tools with their data. This innovation drives an important change: you’ll no longer have to copy or move data between data lake and data warehouses.

article thumbnail

Use Apache Iceberg in your data lake with Amazon S3, AWS Glue, and Snowflake

AWS Big Data

licensed, 100% open-source data table format that helps simplify data processing on large datasets stored in data lakes. Data engineers use Apache Iceberg because it’s fast, efficient, and reliable at any scale and keeps records of how datasets change over time.

Data Lake 126
article thumbnail

Simplify data integration with AWS Glue and zero-ETL to Amazon SageMaker Lakehouse

AWS Big Data

With this new functionality, customers can create up-to-date replicas of their data from applications such as Salesforce, ServiceNow, and Zendesk in an Amazon SageMaker Lakehouse and Amazon Redshift. SageMaker Lakehouse gives you the flexibility to access and query your data in-place with all Apache Iceberg compatible tools and engines.